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We study Onsager's theory of large, coherent vortices in turbulent flows in 
the approximation of the point-vortex model for two-dimensional Euler 
hydrodynamics. In the limit of a large number of point vortices with the energy 
per pair of vortices held fixed, we prove that the entropy defined from the 
microcanonical distribution as a function of the (pair-specific) energy has its 
maximum at a finite value and thereafter decreases, yielding the negative-tem- 
perature states predicted by Onsager. We furthermore show that the equilibrium 
vorticity distribution maximizes an appropriate entropy functional subject to 
the constraint of fixed energy, and, under regularity assumptions, obeys the 
Joyce-Montgomery mean-field equation. We also prove that, under appropriate 
conditions, the vorticity distribution is the same as that for the canonical dis- 
tribution, a form of equivalence of ensembles. We establish a large-fluctuation 
theory for the microcanonical distributions, which is based on a level-3 large- 
deviations theory for exchangeable distributions. We discuss some implications 
of that property for the ergodicity requirements to justify Onsagefs theory, and 
also the theoretical foundations of a recent extension to continuous vorticity 
fields by R. Robert and J. Miller. Although the theory of two-dimensional 
vortices is of primary interest, our proofs actually apply to a very general class 
of mean-field models with long-range interactions in arbitrary dimensions. 

KEY WORDS: Negative temperatures; coherent vortices; statistical 
mechanics approach to turbulence; maximum entropy principle; large 
deviations. 

1. I N T R O D U C T I O N :  THE O N S A G E R  THEORY 

In  a f a m o u s  p a p e r  p u b l i s h e d  in 1949 O n s a g e r  p r o p o s e d  a s ta t is t ical  t h e o r y  

o f  the  f o r m a t i o n  o f  la rge-sca le ,  l ong - l i ved  vo r t ex  s t ruc tu re s  in t u r b u l e n t  

flows. (1) W e  w o u l d  l ike  h e r e  to brief ly r ev iew the  e l e m e n t s  of  O n s a g e r ' s  

Theoretische Physik, Universit~it Mfinchen, D-8000 Munich 2, Germany. 

833 

822/70/3-4-21 0022-4715/93/0200-0833507.00/0 �9 i993 Plenum Publishing Corporation 



834 Eyink and Spohn 

theory with an emphasis on its dynamical foundations. Thereafter, we 
review also some of the theoretical developments and critical discussions 
which have followed Onsager's proposal. As the conclusion of this 
introductory section, we state precisely the theorems which are our own 
contribution to the literature of the subject. 

It must be emphasized at the outset that Onsager's theory is not, 
apparently, directly relevant to the scale-invariant, turbulent cascade state 
which is often the subject of turbulence theory. 2 The latter universal 
statistical state is believed to attain in high-Reynolds-number turbulent 
flows for the "inertial subrange" of scales, far below the integral length 
scale imposed by the macroscopic flow boundaries and far above the inner 
or dissipation scale where viscosity effects become influential (see refs. 2 
and 3). The regime considered by Onsager is also far above the scale set 
by viscous dissipation--so that the Euler equations of ideal hydrodynamics 
should be applicable--but in fact consists of the largest scales of the flow, 
of the macroscopic length scale. It may be misleading to use a terminology 
similar to that employed for homogeneous turbulence, since the situations 
we consider are actually rather different, but it seems appropriate to refer 
to this regime as the "inertial super-range" of scales. More simply and less 
prejudicially, we may refer to the "macroscopic range" of scales. In fact, as 
we shall see, the influence of boundaries or global flow constraints plays a 
vital role in the phenomena we discuss. 

An essential limitation of Onsager's theory is that it applies to only 
quasi-two-dimensional flows in nature. Since there are some important 
situations, such as atmospheric or geostrophic turbulence, where a 
two-dimensional description seems valid, (5) the theory is not without 
practical interest. Two-dimensional turbulence is, of course, also useful as 
a theoretical toy and may be tested against numerical simulations. 

Another limitation of Onsager's theory, as originally formulated, is 
that it applied only to situations where a vortex model of the two-dimen- 
sional Euler equations should be valid. The latter approximation applies 
when the fluid vorticity is dilute and concentrated into small "blobs." It has- 
been known since Ki rchho~ 6) that such vortex blobs obey approximately 
a Hamiltonian particle dynamics. To be specific, let us consider a bounded 
flow domain A. The system of Euler equations for the fluid velocity 
v = (vl, v2) in A is 

~,v + (v- V) v = - V p  

V ' v = O  
(1.1) 

V" fileA = 0  

v(x, 0) = Vo(X) 

2 However, an interesting recent attempt along these lines is contained in ref. 4, which 
discusses vortex filaments as equilibrium models of the three-dimensional cascade state. 
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where p is the fluid pressure and fi is the normal to 3A. It is assumed here 
that the density of the fluid is p = 1. An equivalent description is in terms 
of the (pseudoscalar) vorticity co = (V • v)" e3 : 

(~t(.0 "]- V ~ (V(.0) = 0 
(1.2) 

~(x, 0) = ~o(X) 

Vxv=co~ 3 

V ' v = 0  (1.3) 

v'fi[oA = 0  

The second group of equations may be solved by introducing the stream 
function ~ according to the relation v = ~7 x (~43) = (t32~, -c31 ~). Then, the 
function ~, must obey 

- 3 r  
~'leA = 0  (1.4) 

If - VA(x, y) is the Green's function of the Laplacian with 0-Dirichlet b.c. 
on OA, then the first equation above may be inverted as 

~(x) = fAdy V~(x, y)co(y) (1.5) 

Now, imagine a situation where co = Z ~ = l  c0i, the co~ have definite 
signs, small disjoint supports centered at xl,..., xN, and total circulations 

dx co~(x)= R~, i = 1,..., N. Then, it is known that the centers of the "blobs" 
move approximately according to a Hamiltonian evolution 

where 

dxla OHA (1.6) 
Ri-Z-=  + ~x~2 

dxl2 OHA (1.7) 
R~ dt = - Ox~---~ 

hA(x,,..., xu)= Y~ R~WA(xi)+ Z RiRjVA(xi, YA (1.8) 
i i < j  

The terms WA(Xl), which are absent for flee space A =~2,  represent 
the individual energies of each vortex with the image charges necessary 
to maintain the boundary conditions and with an infinite self-energy 
subtracted: 

W.dx) = lim ~[V.~(x, y ) -  V~(x, y) ]  (1.9) 
y ~ x  



836 Eyink and Spohn 

where 

1 
Vow(x, y) = - ~ log Ix - y[ (1.10) 

is the pair-potential in free space. In fact, it may be proved rigorously that 
the vorticity field calculated from the point-vortex model solution xi(t) for 
initial data xi(0)= x~, 

CO,(x) ==- ~ R i r ( x -  xAt) ) (1.11) 
i 

is, for a finite time interval, the weak limit of the solution of (1.2) if 
the initial data COo for the latter converge weakly to ~ i  Rib(x-xl ) .  (See 
Theorem 4.3 of ref. 7.) The vortex model breaks down as an approximation 
to Euler dynamics for blobs of finite radius in a close approach: e.g., a 
strong vortex may stretch a nearby weaker vortex into a long ribbon of 
vorticity under the shear of its velocity field. ~8) However, such close 
encounters occur for initial conditions of vanishing Liouville measure as 
the core radius shrinks to zero (in fact, this may be used to construct a 
global dynamics for the point-vortex model as a limit of a model with 
"cores"; see ref. 9 and Theorem 2.1 of ref. 7). The vortex model will further 
fail to describe the evolution of vortex blobs in real fluids, governed by 
Navier-Stokes equations, as the effects of (kinematic) viscosity v, such as 
diffusion of vorticity, manifest on a long time scale ,-~ 1/v. 

The fundamental hypothesis of the Onsager theory was that, under a 
wide variety of circumstances, the long-time distribution of the point vor- 
tices should be governed by equilibrium statistics. The dynamical basis of 
this hypothesis lies in the assumptions (i) that the system of vortices shall 
be energetically isolated, and (ii) that, as a consequence of the ergodicity 
of the point-vortex dynamics, a microcanonical equilibrium distribution 
shall be achieved over the energy surface. The assumption (i) of energetic 
isolation can never be strictly true, as the vortex system shall always lose 
energy to molecular degrees of freedom by the effects of viscosity. However, 
there is a well-known tendency in two-dimensional turbulence for energy to 
flow to and reside in the largest scales, the so-called inverse energy cascade 
predicted by Kraichnan. ~1~ This is seen, for example, in the decay of an 
initial turbulent vorticity field studied by McWilliams (m as the evolution 
of large coherent vortices from the chaotic surrounding flow (see also 
ref. 12). Such large vortex structures are only weakly dissipated by 
viscosity. The second assumption (ii), ergodicity of the point-vortex model, 
is a difficult dynamic problem and rather problematic. There are certainly 
indications that, in many circumstances, the vortex dynamics shall not 
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have a single ergodic component, but, indeed, a region of finite Lebesgue 
measure where it is completely integrable (see ref. 13 and ref. 7, Section 2). 
However, as we shall see later, conditions much weaker than strict 
ergodicity would suffice to justify equilibrium statistics. A more serious 
question is the time scale of relaxation to equilibrium, since, for the validity 
of Onsager's proposal, the effective microcanonical distribution must be 
achieved, certainly, in less than the viscous diffusion time. Simulations of 
the point-vortex model itself show that configurations with widely scattered 
clusters of vortices may fail to equilibrate rapidly overall (~4) (although 
individual clusters may achieve a "local equilibrium"). 

However, let us assume with Onsager that, in fact, the large-time 
statistics is a microcanonical equilibrium. From this we may see already 
that, for high energies, the configurations with a close clustering of vortices 
of like sign shall be statistically dominant. This is a consequence just of 
the energy constraint; cf. the expression (1.8) for the vortex Hamiltonian. 
Therefore, the formation of large compound vortices in two dimensions 
may be considered a simple analogue of the more complicated three- 
dimensional phenomenon of "folding" of stretched vortex tubes. (15) 

On the other hand, another illuminating point of view may be 
obtained by going to an equivalent canonical description. It was a 
fundamental observation of Onsager that, as a consequence of the 
boundedness of the phase space, the state of maximum entropy for the 
vortex gas does not correspond to the maximum possible energy. Clearly, 
the state with maximum Gibbs entropy 

S(PN) = --~NJA dxl "'" dxN pN(Xl ..... XN) log #u(Xl ..... XN) (1.12) 

is just the distribution 

1 
]2N(XI,... , XN) --lAIN (1.13) 

[[AI =2(A), where 2 is Lebesgue measure], for which the vortices are 
independently, uniformly distributed over A, and the maximum entropy 
value is N-log [A[. However, this distribution does not give the maximum 
energy. To keep things simple, consider the case where all Ri = 1. Then, the 
above state corresponds to a mean energy 

dx i I. dx~ dy VA(X, y)+Nf~-~) WA(x) Ec~t=2N(N-1)-A IAt JA [A) (1.14) 

However, much larger energies are possible for states in which the vortices 
are all squeezed close together. This suggests that, if the entropy is written 
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as a function of the mean energy S(E), it shall be decreasing for E > E e r i t  , 

corresponding to a negative absolute temperature. For a negative-tem- 
perature canonical distribution, like-sign vortices shall statistically attract, 
which provides another explanation of the phenomenon of large vortex 
clusters. We would like to remark that Onsager made his original 
argument with the Boltzmann entropy defined from the microcanonical 
phase-space volume, whereas the Gibbs form of the entropy allows an easy 
evaluation of the critical energy. 

It may be worth pointing out, parenthetically, that the above 
considerations also apply for clusters of vortices in essentially unbounded 
flow situations as a consequence of additional conserved quantities of the 
vortex dynamics. In fact, the center of vorticity 

x=  E~=`R'x~ (1.15) 
ZN=I Ri 

and the angular momentum (internal, or relative to the center) 

N 

L2= ~ R~(xg-X) 2 (1.16) 
i = 1  

are both conserved. Notice that the latter in particular restricts 

L 
Ixi--YI < (1.17) 

max; IRil 

so that the accessible phase space in the frame of the mean motion of the 
vortices is, in fact, bounded. 

Now, Onsager did not in fact propose an asymptotic limit for the 
validity of his theory. Indeed, the study of the standard thermodynamic 
limit had only been just begun in 1949 by v a n  H o v e .  O6) However, one 
expects a thermodynamic description to be valid in a limit N ~ ~ .  This 
question was taken up by Frfhlich and Ruelle in 1982. (17) They studied a 
neutral vortex gas (~i Ri = 0 )  in the standard thermodynamic limit where 
N ~  oo with e=E/N, Q=N/[A[ held fixed. (Because of the scaling proper- 
ties of the vortex gas, one can also consider this limit to be one in which 
A is held fixed: see Section 5.4 of ref. 17.) The result of their work was that 
the entropy function s(e, Q) obtained as the limit of the microcanonical 
entropy in the above standard form did not decrease over any interval, as 
suggested by Onsager's argument, and therefore the predicted negative- 
temperature states did not exist. Fr6hlich and Ruelle admitted the 
possibility of alternative limits (Section 5.4), but they suggested that their 
result ruled out a nontrivial entropy function for any other limiting proce- 
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dure. This argument is not conclusive, because the scaling relation (3.8) in 
their paper implies, with their main result, that the scaling we consider 
below gives a limiting behavior + c o -  ~ and could, therefore, be 
nontrivial. 

In fact, it seems clear that a different scaling is called for. In the first 
place, Onsager was attempting to explain the origin of nontrivial vortex 
structures on the scale of the flow domain A. If such a vortex structure is 
composed of a "cloud" of point vortices, then clearly it has an energy 
-,~N 2, where N is the number of point vortices in the cloud. Indeed, every 
pair of vortices at positions xe, xj in the cloud contributes an interaction 
energy V(xi, Yi) of order unity. Furthermore, the critical energy Ec~, 
observed by Onsager to give the maximum entropy itself grows like N 2, as 
may be directly seen from the formula (1.14). Therefore, we infer that the 
negative-temperature description proposed by Onsager is likely to be valid 
when the number of vortices N is large and the energy per pair of vortices, 
e = E/N 2, is of order unity, and, in fact, greater then some critical value 

1; ecri'=2 "~l ~ VA(x, y)< +~ (1.18) 

To our knowledge, the correct scaling of the energy as N 2 for Onsager's 
theory was first stated in 1977 by Lundgren and Pointin. (14) It may be 
worth remarking that if one approximates a continuous vorticity distribu- 
tion by N point vortices of strength 1/N [cf. Eq. (1.27)], then the 
hydrodynamic energies considered are relatively high, i.e., e >co=,, but 
finite-valued in the limit N ~ oo. 

As a formal device, it is equivalent also to consider a standard limit 
with e = E/N (and A) held fixed if one replaces the Hamiltonian (1.8) by 

1 1 
Jq (x  ..... x,,) WAx,)  yj) 

�9 i < j  

(1.19) 

In this formulation, the problem is deafly of mean-fieM type. The thermo- 
dynamic limit for the canonical distribution with this class of mean-field 
Hamiltonian was first established in 1982 by Messer and Spohn. (18) Their 
proof covers even the situation of negative-temperature canonical distribu- 
tions, but was restricted to the situation where the potentials VA and WA 
are bounded. More recently, Caglioti etaL (x9) and Kiessling (2~ have 
extended that work to the point-vortex model with singular Coulomb 
potentials as described above. In these works also it was first pointed out 
that the formal mean-field scaling is the correct thermodynamic limiting 
procedure for Onsager's theory. However, these works do not discuss the 
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origin of the negative temperatures, which would require consideration of 
the microcanonical distributions and a theorem on the equivalence of 
ensembles. We emphasize the physical primacy of the microcanonical 
distributions. There seems to be no other reasonable explanation of 
negative-temperature states: in particular, it is hard to conceive of 
"negative-temperature reservoirs" in nature. 

For any symmetric distribution of the N-vortex system with a density 
#(N)(x~,..., XN), one may define the density of the rth marginal measure, or 
reduced distribution, o~N)(xl ,..., Xr), as 

o~N)(x1  ..... Xr) -~ fAN_ r dXr + 1"" dXN ]A(N)(x1 ..... XN) (1.20) 

When ~(N) is an equilibrium distribution, microcanonical or canonical, it is 
easily shown that the Q~N) obey a stationary hierarchy of equations which 
couple Q~N) to ~,(N) However, Joyce and Montgomery have argued that ~ ' r+  1 " 

in the limit N +  oo, for the canonical case, O~m(Xl,..., xr)-~l--[~=, 0(x;), 
allowing them to close the hierarchy. (2') The limiting one-particle distribu- 
tion 0 is then seen to obey the mean-field equation 

O(x)= Z - l  exp [--fl f A dy VA(x, Y) O(Y) ] (1.21) 

where 3 is the inverse temperature and Z is a normalization factor. The 
same equation was earlier derived (actually, a slight variant) by Joyce and 
Montgomery, as a heuristic application of a maximum entropy principle. (z2) 
In other words, the probability distribution 0 on A which maximizes the 
entropy 

s(o) = - f  A dx Q(x) log O(x) (1.22) 

subject to the constraint that 

e(Q) = �89 f A dx ~A dy V A(X, y) O(x) O(Y) (1.23) 

takes on a fixed value e was argued to satisfy (1.21) for an appropriate fl 
and to give the "likely" vorticity distribution of the system. Notice, in fact, 
that if Q is interpreted as a vorticity field co, then (1.21) may be written as 

- d~(x) = co(x) -- Z - '  exp [ -/~qJ (x) ] (1.24) 
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where 0 is the associated stream function given by (1.5). Furthermore, this 
vorticity field is therefore a stationary solution of the Euler equation (1.2), 
as is any field of the form co = f (O)  for somef.  

Corresponding results were rigorously obtained in the above-cited 
works on the mean-field limit for the canonical distribution. In particular, 
it was shown that 

..... x~) --. [ v(do) Q(xi)..-O(x~) (weakly) (1.25) Q~N)(x I 
d 

where v is a probability measure on the space of distributions over A. 
Moreover, v was shown to be concentrated on the L ~ solutions of the 
mean-field equation (1.21) which minimize the free energy 

4'6(~o) = ,Be(Q) - s(0) (1.26) 

(Actually, ~b~ is /~ times the usual free energy f~.) If there is a unique 
solution of this variational problem, then the factorization predicted by 
Joyce and Montgomery indeed occurs. Furthermore, in that case, there is 
a law of  large numbers for the empirical vorticity distribution, 

1 
6 ( x - x i )  (1.27) 

z = l  

according to which, for any bounded, continuous function f on A and any 
6 > 0, and for the free energy minimizer Q*, 

fA dx  (x)f(x)-fA dx *(xtf(x) (1.28) 

with probability going to one as N ~ oo. This renders precise the proposal 
that 0* is "most likely". 

Let us now state our own results. 
In the first place, we study the mean-field thermodynamics of the 

vortex gas starting from a microcanonical distribution on an "energy shell." 
To be precise, we consider the microcanonical-type distributions 

1 
]A [Ae),e+ ] ( d X l "  "" dxu) = aN, E . . . . .  2 z{e_  <<. "ffI(N)/N << . e + } ) ~ N ( d x l  . . .  dxu) 

(1.29) 

where 

sg~,E . . . . .  2 = 2 u  e_ ~<--~-- ~< e § (1.30) 
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and ~(N) is the mean-field Hamiltonian defined in (1.19) (with a technical 
modification to be discussed below). Defining as usual a specific entropy 
su, o(e) as 

Su, o(e) = 1 l o g  ff~N, [ e -  0/2,e + 0/2] (1.31) 

we show that the limit 

s(e)= lim lim SN, O(e) (1.32) 
O ~ O  N ~ o ~  

exists for all e and defines an upper semicontinuous function. In fact, 

s(e) = sup{s(Q): Q ~ ~ I ( A ) ,  8(~0) = e) (1.33) 

where ~I (A)  is the set of (Borel) probability measures on A and s(e), e(Q) 
are the obvious extensions of the previously defined functions to ~I(A).  
Furthermore, we show, at least in the most favorable cases, that s(e) 
exhibits the behavior predicted by Onsager: its maximum is achieved at ecri~ 
given by (1.18) and thereafter it is a decreasing function of e. The schematic 
behavior of s(e) is sketched in Fig. 1. 

Note s(e)= - ~  for e ~<0. Also, as pictured, s(e) is concave over its 
entire range and has asymptotic slope -8re as e ~ + or. The graph is for 

log IAI- 

Y 

ee.vlt 

Fig. 1 
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the case where A is a circular domain. However, the latter two properties, 
particularly the concavity, are proved only under particular conditions. 
In general, we can prove concavity of s(e) only for e ~< ecrit. If one defines 

r = inf{r ~ e ~'~(A) } (1.34) 

which was shown in previous work to be (fl times) the free energy, then we 
show that its Legendre transform 

g(e) = inf [fie - q~(fl)] (1.35) 

is the closed, concave hull of s(e). 
Further results are a precise form of a maximum entropy principle and 

an associated statement on the equivalence of microcanonical and canonical 
ensembles. To be precise, we show for the microcanonical distributions 
~,(~) ~ that the same factorization of reduced distributions occurs in the [e-,e+.l 
limit N ~ ov as for the canonical case, namely, 

a(N) ~ f v(dQ) O | weakly (1.36) r 

but that now v is concentrated on a set 

= {@ ~ ~1: e ( ~ =  e, s(@) = s(e)} (1.37) 

where e e l e _ ,  e + ] is the point where the maximum of s over that interval 
is achieved (this point will be unique if s is strictly concave there). 
Furthermore, if s is differentiable at e, then 

~e  = {~ ~ ~ 1 .  ~/ff(e)(O) = r (1.38) 

where f l (e)= s'(e) and the support of v is contained in the support of the 
measure for the corresponding canonical distribution at inverse tem- 
perature fl(e). If Ca(e)(0)=r has a unique solution, then the two 
ensembles completely agree for the equilibrium vorticity distribution. We 
also discuss the situation when strict convexity or differentiability of s does 
not attain. 

Lastly, we establish a large-fluctuation theory for the empirical 
vorticity distribution (1.27) with respect to the microcanonical distribution 
on the phase space of N vortices. This result quantifies the previous law of 
large numbers by stating, essentially, that for any 6 > 0 

[e_,e+] 
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for some A > 0. In fact, A is the difference between the maximum entropy, 
s(e)=s(o*), and the maximum of s(o) under the additional constraint 
[o(f)-o*(f)[ >>,6. This result is proved by means of a large-deviations 
theorem for exchangeable distributions, which somewhat generalizes well- 
known theorems of Sanov type. The latter also yields independent proofs 
of the main results on the convergence of entropy and correlation func- 
tions. However, we establish these results mainly for their foundational 
significance in understanding the statistical and dynamical basis of 
Onsager's theory. 

For convenience we have so far discussed the case of univalent vortices 
with all circulations R ; -  1, and, likewise, the proofs we give below are for 
that special situation. The restriction especially to vortices all of the same 
sign is rather severe as it rules out many interesting cases, e.g., the com- 
monly simulated example of the overall neutral vortex gas composed of 
equally many vortices with R,. = +1 and Rj = - 1  in a periodic domain. 
(However, it does correspond well to certain experimental situations, such 
as the final equilibrium states of initial shear layers. (23)) At the cost of some 
complication of the arguments, our proofs can be generalized to the situa- 
tions of both positive and negative signs of vortices, and the results of the 
analysis are similar to those for the single-sign case. The vorticity fields are 
then best considered as signed measures (see, e.g., ref. 7), whose "charge" 
densities in the equilibrium distribution obey a modified form of the 
mean-field equation in (1.21): 

1 [ f ] 1 Z_ p(x)=~+exp - f l  J VA(x, y)p(y) dy - 

xexp[ +~ f Va(x, y)p(y)dy] (1.40) 

This distribution is characterized as the one which maximizes the entropy 
functional 

s(p)= --f p+(x) 1ogp+(x)dx-f p_(x)logp_(x)dx (1.41) 

subject to the constraint of fixed energy (here p +, p_ are the densities of 
the positive and negative vortices, giving the total vorticity p = p + + p_ ). 
In fact, this was the situation considered originally by Joyce and 
Montgomery (z2'21) and Eq. (1.40) seems to describe well some recent 
numerical simulations/z4) We have omitted treatment of this more general 
situation partly because, in our opinion, the Young measure methods dis- 
cussed in Section 4 provide a more general and convenient description of 
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signed vorticity distributions. In that setting the above mean-field equation 
is recovered in a "dilute-vorticity" limit. (25) 

We must mention a technical limitation of our proof is that it works 
only for bounded potentials VA and WA. Therefore, we must "cut off" the 
singularities which occur in VA(x, y) for [x-yl  ~ 0  and in WA(X) for 
dist(x, 3A) ~ 0. To be specific, we may introduce regularized potentials V~, 
W~--along the lines of those defined in Chapter 2 of ref. 7 for a circular 
domain A--which agree with VA, WA outside a "core" of radius 6 and 
which have the property to converge pointwise, monotonically to VA, WA 
as 6 ~ 0 +. Then, strictly speaking, our results for the thermodynamic limit 
N ~ ~ hold only for a fixed fi > 0. On the other hand, we may take 6 as 
small as we please, e.g., an atomic radius! In particular, as we argue in 
detail in Section 4, the equilibrium predictions hold with good accuracy 
and high probability for a fixed N sufficiently large, independent of 6. 

The physical limitation of Onsager's theory to the conditions where 
the vortex model is applicable is, however, quite restrictive, as Onsager 
himself recognized. On the other hand, the full Euler equations given in 
(1.2) are, in fact, an infinite-dimensional Hamiltonian system. (26'27) This 
suggests that a similar statistical theory might be based directly on (1.2) 
rather than on the special point-vortex approximation. Unfortunately, the 
infinite-dimensional character of the dynamics has prevented the construc- 
tion of suitable equilibrium measures which might describe the long-time 
statistics of the empirical flow field. Recently, however, an extension of 
Onsager's theory to situations with a continuous distribution of vorticity 
has been made independently by Miller (25'2s) and Robert. (29~ Their methods 
appear rather different, but, in fact, the theories are completely equivalent. 
Their generalization of Onsager's theory removes the restriction to situa- 
tions of dilute vorticity, although it is also limited, fundamentally, to times 
less than the viscous diffusion time. Both Miller and Robert emphasize the 
need to consider all the conserved first integrals of the Euler flow defined 
by (1.2). In our opinion, however, the dynamical foundations and the 
physical conditions for the validity of the Miller-Robert theory are not yet 
completely clarified. For that reason, we have restricted most of our discus- 
sion to the original point-vortex model of Onsager. However, in Section 4 
we give an essentially self-contained review and critical discussion of the 
extended theory. 

Let us summarize now the content,of the remainder of this paper. In 
Section 2 we establish the thermodynamic limit of the microcanonical 
entropy and correlation functions, proving also an associated maximum 
entropy principle. In Section 3 we establish a form of equivalence of ensem- 
bles, valid under condition of concavity of the entropy, and validity of the 
Joyce-Montgomery mean-field equations. In Section 4 we discuss the large- 
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fluctuation theory and the statistical foundations of both the original 
Onsager theory and the extended Robert-Miller theory. Finally, in the 
Appendix we give the proof of the large-deviations results. 

2. CONVERGENCE OF THE ENTROPY AND 
THE M I C R O C A N O N I C A L  CORRELATION FUNCTIONS 
IN THE MEAN-F IELD T H E R M O D Y N A M I C  LIMIT 

As discussed in the Introduction, we wish to establish the limits 

lira l l o g  f2++ ~ = s(e) (2.1) lim 
.d J, {e} N - - co  ~ 

defining the thermodynamic entropy as a function of (pair-specific) energy, 
and in the appropriate sense, limits 

lim e~  N) = e r  (2.2) 

of the correlation functions defined from the microcanonical distribution 

/7<++) ,~ 
, ~ m ( . ) -  i++ (-  ] - ~ - - e  A) (2.3) 

i(-)--2(-)/2(A) for a mean-field Hamiltonian of the form in (1.19): 

1 1 
FI(N)(xl ..... x++)=-l~ 2 V(xi, yi)+~ ~ W(xi) (2.4) 

i < j  

We may here assume that V is nonnegative, continuous in A x A, vanishing 
for one of its arguments in the boundary OA, and, therefore, bounded 
above by some constant 2B < +oe. Likewise, W is assumed continuous on 
A and bounded as II W[] o~ < B. The constant B diverges as the cutoff 6, 
discussed in the Introduction, goes to zero. 

We now state the fundamental theorem from which these results shall 
directly follow. Let us define, for any energy interval A (open, closed, or 
half-open/half-closed) 

s(A) - sup{s(0): Q e ~1, e(O) e A } (2.5) 

with ~1 the Borel probability measures on A, and s(o), e(0) defined as in 
Eqs. (1.22), (1.23) of the Introduction. Then, we have the following result. 

T h e o r e m  2.1. The following conditions hold: 

(i) limN_ o~ (l/N) log t2++,a ~< s(zT), where J is the closure of d. 
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(ii) limN_ o~ (l/N) log 12N.Z >~ S(Zl), where A is the interior of A. 

(iii) If s(z~)= s(A), then any weak limit point of the sequence/1~ N) is 
of the form 

l* = f v,(do) 0 ~ (2.6) 

with vu a Borel probability measure on ~ which is supported on the set 

~ =  {e e ~ ' :  ~(o) e 2, s(e) = s(Z)} (2.7) 

We choose a subsequence #~uk) such that #~a Nk) --+# (such a sub- 
sequence exists by compactness). Clearly, p e ~ , ,  i.e., /~ is a symmetric 
distribution on A ~. Hence, by the theorem of the Finetti (3~ cited in 
the Appendix, an integral decomposition of the form (2.6) holds. We 
characterize now its support: 

Lemma 2.2. r u is supported on the set gz= {0 e ~1: e(Q)e j} .  

Proof. We consider the random variable ffI~Nk)/Nk distributed with 
respect to #(N,). It is easy to check that by weak convergence (along the 
subsequence) for any n e N, 

lim p(~u*~((ffI(U*~n~=fvu(Q)e(Q)n (2.8) 
k--,o~ \ \  Nk J ] 

where we have used that V is bounded, continuous. Since [Ft(uk)/Nk[ <, B, 
the powers form a convergence-determining class of functions and ffI(N~)/Nk 
converge weakly to the random variable e(0) distributed with respect to v u 
(see ref. 31, Theorem 8.48 and Proposition 8.49). Since the distribution of 
~I(Xk)/Nk with respect to p~Nk) has support in 2, so must the distribution of 
e(0) with respect to vu. [] 

Proof of the Theorem. We follow here a modified form of the 
strategy used by Messer and Spohn (~s) for the canonical distribution. (We 
thank M. Pulvirenti for insisting on the possibility of doing so: our original 
proof of the theorem proceeded by means of the large-deviations theory of 
Section 4.) 

(a) Upper bound. Let ~,." ~Nk) be the marginal of #~u~) onto { 1,..., n }. 
By subadditivity of entropy for any N and n 

l ~ t '(Nk)~-<l [ ~  l 771 (IANk_nENk/n~])(Nk) (2.9) Nk'-'lvk~'.J l"~.Nk Sn(l'2(nNk))'~-t.kSNk-n~Nk/n~ 
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where E'~ denotes integer part. By Jensens's inequality, 

SNk_nFNk/n-l(#Nk_n[.Nk/n])~ N ~ - n  log IAI 

(2.10) 
~< n log IAI 

Thus, by the upper semicontinuity of Sn, 

li_F  ,, lsn(., ,)  (211) gk J~ P ' d  ] ]'l 

for every n. Taking the limit (or the infimum) in n, we see that 

1 q, (i (Nk)~ g % <~ h(#) =- j vu(de) s(e) (2.12) 
Nk 

) 

(b) Lower bound. For any energy interval A, define the set 
E~ =--{Q e ~1: e(~)ed, s(Q)> --oo }. We claim that if one takes any open 
interval G c__A and any v supported on 8~ ,  then the following estimate 
from below is satisfied: 

1_~_;o NONt~,~ : , - jv(d6))s(e) (2.13) 

We may as well assume that ~ v(de) s(#) > -oo ,  since the estimate is clearly 
true under the opposite assumption. Define the probability measure a(~N)( �9 ) 
on (A N, NS)  by 

1 zv/f/'t(N) G}~("  )) (2.14) 

with the normalizing factor 

--/.~(N) 

We shall see below that ZN> 0 for sufficiently large N, so that a(a NI is well 
defined. Observe that a ~  N' 4~ 2 s ,  with the density for 2~-a.e. (x~,..., XN) 

�9 a(G:V)(dxl "'" dxw) 1 
~,(dx1 )"" "t,(dxN) = ~N J({ RUV)/N e G }(Xl ,'", XN) 

x I v(do) O(xl)-  ~ ~ ( X N )  (2.16) 
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as seen by applying the Tonelli theorem (we have taken the liberty to 
denote also do/d2 by the same symbol 69, which should not create any 
confusion). Now, the maximum entropy characterization of #N states that 

_ / f ~ ( N )  

(2.17) 

In particular, 

s~ (u(~ ~))/> su (o(2 )) (2.18) 

On the other hand, 

U 1 
SN(0" ~ )) = log ZN-- 7 f dl]'N 

a"'N {~-I(N)/N~ G} 

xl f  v(dQ)oN]log[f v(d')oN 1 

>~lOgZN--~f v(d') f 
{ I-~N)/N s G } 

x log Q(xj) 
1 

dt~N ~ N 

(2.19) 

the latter by Jensen's inequality. From a generalized form of the strong law 
of large numbers [see Eq. (A1 1) in the Appendix] 

/.~( N ) 1 
lim = - Q~(V) = e(Q) Q ~-a.s. (2.20) 

N ~  N 2 

Since G is open and e(O)~ G, FI(N)/Ns G for sufficiently large iV, and 

lim Q ~/f/~(N) })  N-,~ ~ - - - ~  G =1 (2.21) 

by dominated convergence. A second application of dominated con- 
vergence shows that 

j (( }) lim ZN= lim v(do) 0 a ---~--s G = 1 (2.22) 

822/70/3-4-22 
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Because of the inequalities - ~ < s(e) < log [AI and the fact that x log x is 
~> L~(A, Q). Hence, by bounded below, we see that for any Q ~ G, [log Q[ 

the usual strong law of large numbers, 

ulimo ~ ~?1 N j~a log Q(Xj) = --S(Q) 0~-a.s. (2.23) 

Using that - oo < ~ v(do) s(o) < log [A[ and that 

0 ~< f v(dQ) ; Q(dx)['log Q(x)] - ~< 1/e 

(with x -+ = Ixl + x/2), we can again make the argument that 

f v(de) j Q(dx)[log o(x)[ < +~ 
? 

(2.24) 

Then, writing 

j = l  

/ (~I (N) 

( )) + e  N X{~N>/N~C) -- ~ Z 1oge(xj)--S(0) (2.25) 
j = l  

we can apply dominated convergence once more to infer that 

limoo;v(de>QN(x{n,,>/N~6>(lj~=xlogo(xj)))=--f v(do),(O, (2.26, 

Therefore, finally, 

l i r n  1SN(IA(AN)) ) f vu(dQ) s(o) (2.27) 
N .--) oo 

(c) We now infer the main statements of the theorem. For every sub- 
sequence (#(Nk)) along which (1/Nk)SNk(#] Nk)) converges, we may clearly 
choose another subsequence such that #]ukl also weakly converges. If 
acc/~ u) is the set of weak accumulation points of (#IN)), then the reasoning 
of (a) clearly establishes that 

1 sup [ (2.28) lim ~ SN(I~ N)) <~ vu(do) s(Q) 
N --') oo P ~ ace#(a~v) .~ 
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However, by the lemma, we see that the latter is bounded above by s(A), 
giving (i). To obtain (ii), take G =  A in (b), so that 

! ~ ( ,  ( N ) ]  ~ lirn N ~,u~,~ J ~- sup J v(dQ) s(~) (2.29) 
N ~ oo v : v (g~ )  = 1 " 

Specializing to v which are delta distributions 6o with 

one obtains the lower bound by s(A). Under the assumption s(A)=s(z]), 
the previous estimates show that 

(2.30) 

for any #cacc#(~ u). We have already seen from the lemma that v u is 
supported on ~ .  Since J" vu(do) s(Q) = s(A), v~, must in fact be supported on 
~z, for, in the opposite case, j" vu(do)s(Q)<s(A). II 

In defining s(A), we have used the convention that sup ~ = - ~ .  Let 
us note that if s (A)> -~z ,  then ~z # ~ -  This follows since, in the weak 
topology, ~1 is compact, s is u.s.c., and e is continuous. To see the latter, 
one should note that for any sequenc~e (O,) in ~1, 0, w 0, the sequence 
of functions O,(x)=~ V(x, y)Q,(dy) is an equicontinuous family by 
uniform continuity of V on A xA and therefore On(X)~k(X)-- 

V(x, y)Q(dy) uniformly on A. 
We now return to the physically-motivated problems mentioned at the 

beginning of this section. Toward addressing the first, let us define the 
following function: 

s(e) = sup{s(q): Q ~ ~1, e(Q) = e} (2.31) 

with the same convention sup ~b = -oo.  Let us note that by exactly the 
argument used for s(A), the supremum in (2.31) is always attained. 
Therefore, for each c ~< log [A[, 

{e:s(e)>/c} =e( {O~ ~l: s(Q) >lc} ) (2.32) 

From this identity it follows further that s(e) is u.s.c, since its level sets are 
compact, as a consequence of the continuity of e and the compactness of 
level sets of s(Q) on ~1. These properties are enough to deduce the 
following result: 
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P r o p o s i t i o n  2.3. For any sequence of intervals d $ {e} and with 
s(e) defined as above, 

lim 1 l o g  s = s(e) (2.33) lim 
,J $ {e} N ~  

ProoL Combining the upper and lower limit statements of 
Theorem 2.1, we see that 

o 1 1 1 
s(A)~ lim ~Trlog~QN,,j~< lira ~ ogg2N.a~<S(,~ ) (2.34) 

However, just as a matter of working out the definitions, 

s(A) = sup{s(e): e �9 A } (2.35) 

for any A. But then, as a consequence of the u.s.c, of s(e), 

lim s ( 3 ) =  lira s(A)=s(e) (2.36) 
,~{e} a + {e} 

which implies the result. �9 

We will establish now some of the basic properties of the entropy s(e). 
Define dom s = {e: s(e)> - ~  }. From (2.31) it follows that 

dora s = e({O �9 ~1: s(r > -oo  }) (2.37) 

so that, clearly, dom s _  [0, B]. In fact, 0 r dom s, since we assume that 
V(x, y) > 0 for x, y r aA. Thus, e(Q) = 0 iff supp Q _ OA, but then surely 
s ( 0 ) = - ~ .  Hence, s ( 0 ) = - ~ .  B may or may not belong to dom s, 
depending upon the exact way in which V is cut off: for example, if 
V(x, y ) =  2B for a set of (x, y) of positive 22-measure, then B e dom s, but, 
typically, B ~ dom s. On the other hand, using the continuity of V, one can 
construct by elementary means for each e e (0, B) a Q e ~1 with e(Q) = e and 
s(Q) > -oo .  Therefore, it always holds that (0, B)_~ dom s. 

Let us next observe that s has the basic property conjectured by 
Onsager: namely, s takes on its maximum value at eerit given by 

1 
er = 2 IAIE f dx ~ dy V(x, y) (2.38) 

Indeed, s(o) takes on its maximum log [A[ for the unique distribution in ~1 
defined by 2(-)/IA[ = Q,~it('), with IA[= 2(A). Since e(Q=it)= cent, it is just 
a consequence of the definition of s that s(ec~it)= log ]AI and s(e)< log [AI 
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for e ~ er If, as in favorable cases, s is also (closed) concave, than it must 
be decreasing for e > er as was also suggested by Onsager. In particular, 
[3(e) =-s'(e)<0, where s is differentiable for e >  e~i~, and, at the possible 
countable number of points where s is nondifferentiable, the superdifferen- 
tial 8s(e)= [fl_(e), fl+(e)]___(-o% 0) [with fl+_(e)=D+_s(e) the left and 
right derivatives]. 

The function s(e) defined in (2.31) is not, however, a priori concave. 
A very similarly defined function 

g(e) = sup{h(#): # ~ ~ ,  g(#) = e} (2.39) 

on the other hand, is concave. Here, for each/2 ~ ~ ,  

~(~) = i f ~,:(dx, ay) V(x, y) 

= f vu(do) ~(0) (2.40) 

The concavity of g is a consequence of the fact that g is an affine 
function on ~ ,  so that, for each ei, e2 ~ ~, 0 ~< 2 ~< 1, 

2~-~({el}) + ( 1 - 2 ) ~  -~ ({e2})~_~-~({2ea+(1-2)e2}) (2.41) 

Thus, 

.~(2e I + (1 -- 2) e2) t> sup h (2g - l ({e l  }) + (1 - 2) g-1 ({e2})) 

= sup{h(2u~ + (1 - 2) #2): #i~ ~ ,  g(#i) 

=e i ,  i =  1,2} 

= 2-sup{h(p): # ~ ~ ,  g(p) = e~ } 

+ (1 - 2) sup{h(u):/z ~ ~ ,  g(U)= e2 } 

= 2-g(e~) + (1 - 2) ,~(e2) (2.42) 

since h is affine. Since g as defined in (2.40) is clearly weakly continuous on 
~ ,  ~(e) is u.s.c, by exactly the same argument given above for s(e), but in 
the context of ~ rather than ~ .  That is, g is a closed, concave function. 
Other properties of ~ are similar to those of s: dora ,~=dom s, 
g(ecrit)=loglAI, a n d  g(e)<loglAI for e-fiecrit. These follow by easy 
adaptations of the arguments given for s(e). 

In fact, g is a majorant of s: for all e ~ R, 

g(e) >1 s(e) (2.43) 
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This follows simply from the definition of g, specializing /z s ~,  there to 
kt = 0 ~, Q s 0~. (In fact, we see below that g is the closed, concave hull of 
s, i.e., the least closed, concave majorant of s.) For e ~< ecrit , more can be 
said. From what we have said above, ~ is actually (strictly) increasing for 
e < ecfi t. Furthermore, for every e s dom g, the set 

~--- {# s ~ :  g(#)= e, h(/~) =2(e)} #~b (2.44) 

using--for the weak topology--the compactness of ~ ,  u.s.c, of h, and the 
continuity of g. Hence, for any # e ~ with e < eerit , 

~(e) = h(u) = f v~(ae) s(e) 

<~s(nl(g)) with nl (]A) ~-'~- f Y u(dQ) 0 

[by Jensens's inequality, using concavity of s(Q)] 

~< s(~(~l(~))) 

~< g(e(n~(#))) ~< g(e) (2.45) 

since e = e(#) = ~ v~,(dQ) 8(Q) >/e(rCl(#)) by convexity of e(~). Therefore, 
g(~(nx(l~)))=g(e), which can only be true if ~(rq(/~))=e, and thus, by the 
chain of inequalities, 

s(e) = g(e) (e ~< eerit ) (2.46) 

An immediate consequence is that s(e) is indeed concave for e~<eerit. 

However, we can give no argument, in general, that s(e) is concave for 
e~>eerit , and, indeed, for certain domain geometries A, violations of 
concavity are  found .  (32) 

A natural question which arises is the relation of s(e) to the free energy 
~(fl) (actually, fl times free energy) defined from the canonical partition 
function 

= f dx~.., dxu e -t~'lul(~ ...... u) (2.47) 

as  

1 1 ~b(fl) - --Jimo~ ~ og Zu.p 

If we define, for each fie R, r ~1 ~ R by 

(2.48) 

q~a(Q) = fie(0) -- s(Q) (2.49) 
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and ~a" ~ ~ R by 

(2.50) 

then it follows from the work of Messer and Spohn (18~ that the limit in 
(2.48) exists and equals 

~b(/~) = inf{r162 }" 0 s ~1 } 

= inf{~p(/z): # ~ ~,} (2.51) 

We see then at once that 

r = inf [ f l e - s ( e ) ]  
e > 0  

= inf [ f l e -2(e )]  (2.52) 
e > O  

so that ~b is a Legendre transform of both s and g. Because g, in particular, 
is closed, concave, it is the conjugate function to ~(/~): 

g(e) = inf [Be - ~b(fl)] (2.53) 
# 

Therefore we can also infer that g is indeed the closed, concave hull of s. 
In the particular case that g(e) is strictly concave, we can infer that 

g(e) = s(e) (2.54) 

for all e ~ 0~, not merely for e ~<ecri~; from which, trivially, s(e) is also 
strictly concave. This is equivalent to the requirement that r be essen- 
tially smooth. For our case of a bounded (cutoff) potential, this is just the 
requirement that r be differentiable, which may be expected to hold in 
many situations. For the case 6 = 0 with A a circular domain, r is an 
explicitly known essentially smooth function of /~, with r +oo for 
fl < --8re (see refs. 19 and 20). Hence, in that case, lime~ +o~ s'(e)= -8f t .  
For our modification, with ~ > 0 but extremely small, we may expect that 
s(e) for ecrit ,~ e ~ B shall be nearly linear with slope -8re, but for e < B 
shall turn downward and l im,_ B-s ' (e )=  -oo .  

We have now verified the main expected features of s as it appears 
in Fig. 1. However, in addition to the possible nonconcavity we have 
cautioned may occur for e / > e e r i t  , w e  also do not see how to rule out that 
s might have cusps, where it is nondifferentiable, or fiat portions, where it 
is affine, for certain domains A. 
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Let us turn, finally, to a brief discussion of the limiting behavior of 
correlation functions defined by the microcanonical distributions #(U). From 
the correlation functions, defined generally as in (1.20) of the Introduction, 
we can also define correlation measures d#~U)-----0~ N) d2 ~, or, directly, as 
marginals of/~N) on (A ~, ~ ) .  The following is a sample corollary of the 
fundamental Theorem 2.1: 

Proposition 2.4. If s ( z J ) = s ( A ) > - o c ,  then at least along a 
subsequence (Nk), all of the correlation measures #~U)_.. #r weakly, for 
each r e N, to the rth marginal of some # c ~ .  Furthermore, /~r ~ 2r with 
densities Qr given by 

~r(Xl . . . . .  Xr) = f v(dQ) Q(xl)-" Q(xr) 2r-a.e. (2.55) 

with v a Borel probability measure supported on SPa. 
The above proposition is, in fact, equivalent to part (iii) of 

Theorem2.1, since, to verify weak convergence of #~u)~ /~e~ , ,  it is 
enough to show that p(N)(f) ~ # ( f )  for every continuous, local function f, 
and this is just what is implied by the weak convergence of all the correla- 
tion measures. The statement of the support properties of v here and in the 
corresponding part of Theorem 2.1 is what is often referred to as the maxi- 
mum entropy principle. (33"34) In fact, this makes rigorous part of the content 
of the "maximum entropy principle" heuristically employed by Joyce and 
Montgomery, ~2a~ according to which also Q c ~  are the "most probable" 
vorticity distributions over A. 

If ~ = {Q), a singleton, then the latter statement is justified by the 
following remark: for o3~ the empirical vorticity distribution defined in the 
Introduction and for any f ~  C(A) it follows that 

lim /~N)((o3(f) - Q(f))2) = 0 (2.56) 

As an immediate consequence of the Chebyshev inequality, the random 
variable o3N(f) distributed under/~N~ converges in probability to Q(f) for 
each f ~ C(A). Therefore, the distribution Q is indeed overwhelmingly likely. 
In Section 4 we discuss even sharper statements of this form. 

3. EQUIVALENCE OF ENSEMBLES AND THE JOYCE- 
MONTGOMERY MEAN-FIELD EQUATIONS 

We discuss now a version of the equivalence of ensembles which is 
relevant for our problem. We have just seen that, if s ( J ) =  s(Z), then the 
limits of/t~ N) are of the form # = S  vu(dQ)Q~, where v u is supported on the 
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set 6 ~ =  {Qe~l :  e(Q)s j ,  s (# )=s ( J )} .  Let us define for any single point 
e s ~ a corresponding set 

5e=  {Qs~I :  e (0)=e ,  s ( o ) = s ( e ) }  (3.1) 

For the canonical distributions an analogous result on limiting distribu- 
tions and support properties was established by Messer and Spohn. (zS~ In 
terms of the functionals defined in the previous section, they showed that, 
for each fl c ~, the canonical distributions at inverse temperature fl, #~v~, 
defined by 

#(N~( . ) =_ Z@,~ f dx  ~ . . . dx  ~ e -  ~P~N'(x, ...... ~(  . ) (3.2) 

have as their weak accumulation points measures of the form 
# =j" v,(dQ) Q~, where v~ is supported on the set 

(3.3) 

of free energy minimizers. 
We now prove the fundamental result which relates the supporting 

sets of the accumulation points for the two ensembles. We must emphasize 
that our argument depends crucially on the concavity of the entropy s at 
e, i.e., s ( e ) =  g(e), and that we cannot make any statement on equivalence 
without that assumption. In the following argument, we freely identify s 
and g at the point e. 

Theorem 3.1. For each e ~ d o m  s, define f l _ ( e ) = ( D + s ) ( e ) ,  
fl§ ( e ) =  (D_s) (e ) ,  corresponding to the right and left deviatives of s at e. 
Then, if s is concave at e, 

~e __C ~) o~ (3.4) 
~r [.B_(e),fl.(e)] 

ProoL (1) The argument is a standard one in mathematical 
programming and calculus of variations based on the duality of convex 
functions (e.g., see ref. 35). However, we give the argument in detail, for the 
sake of completeness. It is natural to consider separately the cases e ~< ecrit 
and e I> ecrit corresponding, respectively, to regions of positive and negative 
temperatures. Define, for every e ~ dora s, the Lagrangian funct ion Le on 
~ l x R ,  by 

Ze(O, ~ )  = - s ( O  ) + t~(~(~) - e) = q~a(q) - fie (3.5) 
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Now show that for e ~ dom s and e ~< ecrit 

-s(e) = sup inf Le(Q, fl) = inf sup Le(0,/~) (3.6) 
/~>0 ~ e~1 ~ 1  .~>0 

and likewise for e ~ dora s and e >1-ec~it, 

-s(e) = sup inf Le(O, fl) = inf sup Le(O, ~) (3.7) 
/~<0 o e~'l ~ ' e ~ l  /~<0 

We consider first in detail the case e ~< ecrit. Observe that 

inf Le(Q, f l )=  inf ~ ( 0 ) - f l e = ~ ( f l ) - f l e  (3.8) 

Since s(e) is the concave conjugate of ~b(~), it follows that, for e ~< ecru, 

-s(e) = sup [r - /~e]  (3.9) 
B~>O 

and, in fact, the supremum is achieved for/~*~ [-/~_(e),/~+(e)]. This gives 
the first equality in (3.6). On the other hand, 

sup Le(e,/~) = - s ( e )  + sup/~(e(a) - e) 
~ > 0  

= J ' -s (Q)  if e(0) ~<e 
(3.10) h 

[ + ~  if ~(Q)>e 

Then, since s(e) is nondecreasing for e ~< eClat, it follows that 

inf sup Le(o, f l )=  - sup s(Q) = -s(e) (3.11) 

and, as we already observed, the supremum is achieved for some Q*~ ~ .  
In particular, we have the second equality in (3.6). 

The changes required in the argument fo r  e~>e~t should be 
completely obvious. 

(2) We now show that 0 * e ~  iff there exists a /~*~  [ f i_ (e ) ,B+(e ) ]  
such that (Q*,/~*) is a saddle point of Le(Q, ~), that is, 

Le(Q* , fl) <~ Le(Q* , fl*) ~ Le(Q, /~*) ( 3 . 1 2 )  

for all 0 e ~ and/~ >/0 (in the case e ~< era,) or/~ ~< 0 (in the case e i> eclat). 

Let us prove the direct statement for the case e ~< e~t.  We have seen 
above that 

sup Le(o*,/~) = -s(e) = inf Le(O,/g*) (3.13) 
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Clearly, it suffices to show that L~(Q*, f l*)= -s(e).  However, this is also 
obvious since, from the above, L~(Q*,fl*)<<.-s(e)<<.Le(Q*,/3*). The 
argument for e I> eerit is essentially identical. 

Conversely, suppose (~*, fl*) is a saddle point of L,(Q,/3). Taking the 
supremum over/3 and the infimum over Q in (3.13), we obtain 

--S(Q*) <~ Le(Q*, fl* ) <~ r  - -  fl*e (3.14) 

and e(O*)<<.e (for e~<eerit ) or s(Q*)>~e (for e>/ecrit), since Le(O*,/3*) is 
finite by assumption. But then s(o*) <~ s(e) and also - r  + fl*e >~ s(e). 
Therefore, 

- -  s ( e )  = - s ( ~ *  ) -~. t e ( ~ *  , f l *  ) .~- (9( /3")  - /3*e  (3.15) 

Since s(e) is increasing for e ~< ecri~ and decreasing for e/> ecrit , we conclude 
that, indeed, Q*~ 5~e. 

(3) TO complete the argument, we now show that if (Q*,/3") is a 
saddle point ofLe(Q, fl), then 4" minimizes r for some fl* ~ [fl_ (e),/3 + (e)]. 
From what was shown above, the condition that (Q*, fl*) be a saddle point 
of L e is equivalent to the pair of inequalities 

r - /3e  <<. - s (e )  ~< r - fl*e (3.16) 

for the relevant range of/3 and for all Q c ~  1. Now, as we have essentially 
observed, 

V ~  ~, /3*e-s(e)<...r 

r --s(e) <~ inf Ca,(~) = r = inf [-/3*e - - s (e ) ]  
~ , E . ~  1 e 

r /3*e -- s(e) = q)(/3* ) 

/3* c [/3_ (e),/~+ (e)] (3.17) 

Furthermore, specializing the first inequality to/3 = fl*, we obtain 

$~.(~*) ~ fl*e - s(e) = ~b(fl*) (3.18) 

Thus, 0* minimizes ~ba.. �9 

It is worth observing that there is a conditional converse of the above 
statement. Namely, if s is strictly concave at e, then for every minimizer Q* 
of r for some fl* ~ I-fl_(e),/3+(e)], (0", fl*) is a saddle point of Le(o, fl). 
Indeed, s ince/3"~ [/3_(e), fl+(e)],  we have already the second inequality 
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- - s (e )< . . . (~ , . (Q) - - f*e  by the above argument. To establish the first 
inequality, we argue as follows: set e(Q*)= e*, so that s(Q*)~< s(e*) .  Hence, 

f * e * - - s ( e * ) < < . f l * e ( O * ) - - s ( p * ) = ( ~ a . ( Q * ) = q ~ ( f * )  (3.19) 

However, since ~b(f*)= in f~[ f l*e-s (e ) ] ,  in fact, 

f l*e* - s( e* ) = fl*e* - s(Q* ) = ~(f l*  ) (3.20) 

Therefore, e*e  (&b)(f*), the superdifferential of the concave function ~b 
at f*.  Since f * s  [f t_(e),  fl+(e)] = (as) (e)  and, by assumption, s is strictly 
concave, (&b)( f*)=  {e}, i.e., 

e(Q*) = e* = e (3.21) 

Hence, using the second half of (3.20), we see that 

s(Q* ) = fl*e - ~( f l*  ) = s(e)  (3.22) 

However, we have seen in the proof of the above theorem that e(O*)~<e 
(for e~<ec~it) or e(Q*)~>e (for e~>ec~t) and s ( o * ) = s ( e )  are precisely 
equivalent to the validity of the inequality 

q~ a(Q* ) - fie <<. - s (  e ) (3.23) 

for all relevant fl [-i.e., fl~>O or fl~<O, respectively; see (1) of the proof].  
We conclude that (Q*, fl*) is indeed a saddle point of Le. 

Therefore, under the additional assumption that s is strictly concave 
at e, we have the precise equality 

= U ~ (3.24) 
#~ [fl_(e),#+(e)] 

On the other hand, if s is linear over some segment including e, the 
inclusion will in general be strict. We may note, similarly, that if ~b(fl) is 
strictly concave (which we expect: see below), then s is essentially smooth 
and a s ( e ) =  {fl(e)}, where f l(e)= s'(e).  Hence, under the assumption that ~b 
is strictly concave 

-~ ~ e )  (3.25) 

and under both assumptions that s(e)  is essentially smooth and  strictly 
concave, identity holds, 

= ~ )  (3.26) 
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The implication we wish to draw from the theorem is the following: 
the support ~ of the limiting microcanonical measures is contained in the 
support  ~ of the limit of some canonical measure for a temperature 
fle[fl_(e),fl+(e)l. In the most favorable case that s(e) is essentially 
smooth and strictly concave, there is identity, 

~ = ~ ( e )  (3.27) 

However, even then there may be in general a nonidentity 

,(N) :)& aCCN1. ,,(N) aCCNT oo /'~[e-,e+] l~fl(e) (3.28) 

{with s(e)= sup s ( [ e_ ,  e+ ])}. In the very special but important situation 
that s is essentially smooth and ~ ( e ) =  {0~(e)}, a singleton, then also 
5~ = {O~(~)}, and for N - *  

A(N ~V N (3.29) /~(e) ~Op(~) 

and 

# ( • )  ~ w, O r~ (3.30) 
[ e _ , e +  j f l (e)  

also. According to the remark at the end of Section 2, the empirical 
vorticity distribution under these assumptions distributed according to ,,(N) ~#(e) 
or ,,(N) converges in probability to e#(e)- In that case, we have a /~[e- ,e+] 
complete equivalence of the two ensembles. 

For  the canonical distribution, there is actually the further information 
obtained from explicit correlation bounds (t8-2~ that for # e accNroo p~Ni 

v~(~c~L ~176 = 1 (3.31) 

Now, it is not hard to verify that s(Q), e(e) are C'-functions on the Banach 
space L ~ with differentials 

ds(e) . h = - f A dx[logo(x) + 1] h(x) (3.32) 

and 

& ( e ) . h  = fA dx fAdy V(x, y)o(x)  h(y) (3.33) 

defined for all heL~176 and for p i n a n  L~ of any 
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p* ~ L +  = {p e L~ L~176 ess.inf p > 0}. Therefore also ~,ba(O) = fie(O) - s(o) 
is differentiable, and any solution of the variational problem 
inf{~ba(O): O c ~1 ~ L+ } is also a solution of the variational equation 

d~(Q) = 2" (3.34) 

where 2* is a Lagrange multiplier to incorporate the normalization 
constraint 

f dx O(x) = 1 (3.35) 

By using the explicit forms of the differentials ds, de, it is easily seen that 
the variational equation is equivalent to the mean-field equation 

e x p [ - f i  ~ dy V(x, y) O(Y)] 
O(x) = S dx exp[ - f i  ~ dy V(x, y) O(Y)] 

(3.36) 

such as was first derived by Joyce and Montgomery (22) (actually, as noted 
in the Introduction, their equation was for a slightly different situation). It 
is here seen to be obeyed by the limiting canonical distributions under the 
mild extra condition that ess.inf p > 0 [which from Eq. (3.36) is, indeed, 
found true a posteriori]. On the other hand, it should be noted that there 
may be solutions of the mean-field equation which are not solutions of the 
variational problem. It has been pointed out by Caglioti (32) that strict 
concavity of ~(fi) follows if the mean-field equation is obeyed, since no p 
may satisfy Eq. (3.36) for two distinct fi's. 

While we expect that for the microcanonical case also, if 
s([e_, e + ] ) >  --oo and if #eaccN~oo ,,(N) then vu(L~176 1, we do not /'* [ e - , e +  ] ' 

�9 see how to obtain the correlation bounds to verify this. Of  course, if s is 
differentiable and ~ ( e ) =  {O~(e)}, then also 6~ = {Oa(e)} c L ~, so the result 
follow. If, in any case, we have a priori that O e ~ ca L~ ,  then the method 
of Lagrange multipliers implies, since ~ , (x)=Sa dy V(x, y)o(y)~O,  that 
there exists a f i*e • such that 

as(0) = fi* ae(e)  + ,~* (3.37) 

which is identical to the above variational equation and the equivalent 
mean-field equation, for fi = fi*, derived from the canonical distribution. It 
then follows easily in conjunction with Theorem 3.1 and the assumption 
~k~0 that fi*~ [fi_(e), fi+(e)].  
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4. LARGE FLUCTUATIONS AND THE STATISTICAL 
FOUNDATIONS OF ONSAGER'S EQUILIBRIUM THEORY 

We here discuss the topic of large equilibrium fluctuations of the 
empirical vorticity in the mean-field limit. Then we draw some conclusions 
for the ergodicity requirements necessary to justify Onsager's equilibrium 
assumption, emphasizing their extreme weakness in practice. These results 
and observations have, of course, a general validity in equilibrium statisti- 
cal mechanics, and our point here is just that they carry over to the mean- 
field situation. The proofs of the statements given here are mostly relegated 
to the Appendix, for readers interested in the technical aspects, and we only 
give precise statements and a discussion of the physical implications. We 
finally make a critical discussion of the recent Robert-Miller extension of 
the Onsager theory to allow continuous distributions of vorticity. Although 
we believe this theory is an important advance, we are not satisfied with 
the attempts so far to provide it a dynamical foundation, which, in fact, do 
not give a clear understanding of the physical conditions necessary for its 
validity. In fact, it was largely the Robert-Miller work which motivated 
this section, just because the dynamical picture is much clearer for the 
vortex model and a rather complete discussion of the theoretical founda- 
tions can be made. The disadvantage of our restriction to the vortex model 
is that it applies, literally, in relatively few situations. 

The principal result of this section concerns the asymptotics of 
fluctuation probabilities for the empirical vorticity 

1 ~ ~1 ~ ,=~  ~x,~ (4.1) 
i = 1  

considered as a random variable distributed under the microcanonical dis- 
tribution/~]u). It is physically just a statement of the Einstein-Boltzmann 
fluctuation principle, and technically an upper-bound large-deviations 
estimate. In a form which suffices for our purposes we have: 

Theorem 4.1. If z/is an interval with s(zJ)=s(zl) and d any Borel 
subset of ~a, then 

1 
lim ~ log/~u)(chN ~ d )  < sup As(Q] J )  (4.2) 

N ~ o o  O~.~  

where zts(e J J)  = s(e J J )  - s(J) <~ O, and 

s ( Q l j ) = f s ( Q )  if ~(e) ~ J (4.3) 
if ~(Q) $ zl 
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We here offer only a brief discussion of the proof. Recalling the definition 
of the m.c. distribution as 

],~N)(. ) ~ ~N(. I ff_IN/N ~ A) (4.4) 

we see that estimates of the following form would suffice: 

Ji--~ l l o g  5.N({cbNe d }  n {ffI(N)/N~A}) 

~< sup (s (0) -  log ]AI) (4.5) 
~, ~ . ~  r~ e - l ( z l )  

and 

lim --log >t (s(0)--log 1-41) (4.6) N"-~-"~ N " - 7  e A sup 
o e ~ - l ( 3 )  

Since it is easy to check that 

/~(u) ~<~_ (4.7) 

these are essentially large-deviations estimates of the standard form, but for 
the product measures )~u. In fact, the required results are nearly identical 
to the so-called Sanov property: 

2i ra  l l o g  iN(:DNSd)~< sup (S(o)--log IAI) (4.8) 

and 

lira 1 l o g  2N(&u~d )/> sup (s(Q)--log IAI) (4.9) 
N"~c~ N Q ~ 

for each ~r  which is discussed, for example, in refs. 34 and 36. 
Because we require a slight variation, for which we did not find a con- 
venient source in the literature, we outline proofs in the Appendix. In fact, 
our argument there follows very closely a proof of Georgii of level-3 large 
deviations for Gibbsian random fields on integer lattices 77a. (33) By taking 
advantage of the affine structure at level 3 we are able to prove technically 
somewhat stronger results than those obtained by a level-2 formulation. 

The immediate implication of the theorem is the following: let off be 
a closed subset of ~ such that off n 5#z = ~Z~. Then, 

A~c = - sup As(oIZ) > 0 (4.10) 
0 E ,.'g" 
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and, for any small r/> 0 and all sufficiently large N, 

/~ ~N)(o3 u S o,~) ~< e - N(z/~F - -  r/) (4.11 ) 

That is, the probability for the empirical vorticity to lie in the set ~ ,  which 
excludes the set ~ of entropy maximizers, decays exponentially in the 
number of vortices N. This is physically the sharpest form of the maximum 
entropy principle, since it states that the probability to observe anything 
other than the equilibrium (maximum entropy) configuration is exponen- 
tially small. 

We have already observed in the Introduction that serious doubts may 
be raised about the (strict) ergodicity of the point-vortex model. However, 
we see now that results considerably weaker than strict ergodicity will 
suffice to provide equilibrium statistics. The above result shows, after all, 
that the region of the energy shell in which nonequilibrium behavior is 
manifested has a microcanonical measure (essentially reduced Liouvitle 
measure) which decays exponentially in the number of vortices. Therefore 
it would suffice, for example, if the vortex dynamics had a very large but 
fixed number of ergodic components as N--* oo which had fixed, finite 
fractions of the total measure of the energy shell, or even if the number 
of ergodic components went to infinity if only their individual measure 
fractions went to zero slower than exponentially in N. In any such case, 
the long-time probability starting in any ergodic component to observe a 
nonequilibrium vorticity distribution would be vanishingly small. The rate 
of approach to equilibrium in any ergodic component could be a far more 
serious constraint on the applicability of Onsager's theory. 

The large-deviations result also justifies the physical relevance of the 
cutoff models with 6 positive but (extremely) small. One might worry that 
N--* oo followed by 6 --* 0 is the "wrong" order of limits. In particular, for 
the limit N--, ~ first there is in fact an infinite number of point vortices 
within a core radius 6 of any fixed vortex and the condition for the 6-core 
dynamics to agree with the point-vortex dynamics, and therefore also 
the real dynamics of fluid blobs, will be violated. Notice, however, that 
As~(ol3) in the large-deviations result is just a macroscopic quantity and 
continuous in 6 as 6 $ 0. In particular, the minimum number N of vortices 
to ensure a smaller probability than a of a nonequilibrium event )f", 

log(l/a) 
N~(~, x )  - (4.12) 

--supe ~ x" Ash(e I J) 

is essentially independent of 6 for 0 ~< 6 < 60. Thus, we may first select the 
"deviation" ~ and the "likelihood" ~, and then choose 6 so that 

6~N,(E, X ) a  1 (4.13) 

8 2 2 / 7 0 / 3 - 4 - 2 3  
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This guarantees that the number of particles in the typical final equilibrium 
configuration which are within a core radius 6 of any fixed particle shall 
be essentially zero. Considerations of this sort essentially show that the 
result with bounded potentials suffices to justify the use of the mean-field 
equations. 

We turn now to a discussion of the Robert-Miller theory, which we 
shall first review from the point of view of Robert. (29) A basic tool of his 
theory is the description of vorticity fields in terms of Young measures, 
i.e., a space 9Xm(A) of measurable mappings x~--* vx from A to the set 
~ l ( [ - m , m ] )  of Borel probability measures on [ -m ,m] .  (Here, 
measurability is with respect to the Borel a-algebra for the weak topology 
on ~ l ( [ - m ,  m]).) The bounded interval [ - m ,  m] is to be considered as 
a set of possible vorticity levels. Young measures generalize in a natural 
way the notion of a measurable mapping from A to [ - m , m ] :  for 
each a)sL~(A)= {o)~L~ [Io~llo~ ~<m} we may define a trivial Young 
measure 6,o via 

6,o:x~--~6~,(x) a.e. (4.14) 

The space ?Olin(A) may be supplied with the vague topology of positive 
Radon measures on A x [ - m ,  m] by the identification of the Young 
measures with such a measure v by the formula 

v(f) = ~a dx(vx' f(x'  ")) dx, f e C ( A x [ - m , m ] )  (4.15) 

Any v ~ ~IRm(A) may be approximated in the vague sense by a sequence of 
6o,'s (with co even restricted to step functions) in which the spatial distribu- 
tion of vorticity in an arbitrarily small neighborhood of a.e. x ~ A (i.e., the 
fraction of the area corresponding to each level set of vorticity) converges 
weakly to vx. From this we obtain the proper intuitive interpretation of Vx 
as describing the local distribution of vorticity values: In fact, the usual use 
of Young measures in PDEs is to describe the small-scale spatial oscilla- 
tions of weak solutions. In Robert's theory, Young measures enter again in 
that respect. Even though in two dimensions global classical solutions exist 
to the Euler system (4.1) for classical initial data, their infinite-time limits 
may be measure-valued even for classical initial data, since the dynamics 
mixes the vorticity to increasingly fine scales. Hence, ~0l,,(12) becomes a 
natural space to consider in a theory of long-time statistical equilibria. 

If o%~L~(A) has energy e(COo) and vorticity distribution ~o, defined 
a s  

~o(f) = f dx f(coo(X)) (4.16) 
JA 
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for all f s C ( [ - m , m ] ) ,  and if its Euler flow trajectory, co(t)-= 
~,coo~L2(A) for each t s N ,  converges at least along a subsequence 
co(t.)--, v e 9Jlm(A) in the vague sense, then it is easy to check that 

no = f4 dx v~ (4.17) 

and 

8(coo) = ~(v) 

where ~E L~(A)  is defined as 

(4.18) 

f~ 2vx(d2) a.e. x s A  (4.19) 
~ ( x )  = - m ,  mJ 

Thus, the long-time limits retain the full information about the initial 
constants of the motion of the Euler flow ~t  defined by (4.2). In fact, 
Robert shows that there is a natural extension of r  from L~(A) to a 
flow ~t on 992,,(A), actually unique subject to the requirement that it be 
continuous on 9Xm(A), which is defined as 

(~tV)x = v~;~x) (4.20) 

where ~bt is the Lagrangian flow map associated to the initial vorticity ~. 
According to this evolution, the local spatial fluctuations of vorticity are 
"frozen" and transported by the mean velocity. 

There is also a notion of entropy associated to the Young measures 
analogous to the entropy s(o) we have defined for ~O~,.~I(A). For 
~z o e r - m ,  m]), a given reference probability measure, and n = dx | no 
the "uniform" Young measure, with the same distribution at each point, 
one may define the Kullback entropy 

- lOg\dn/ if v ~ n  
~ ( v ) =  (4.21) 

--oo if v ~ z c  

through the identification of Young measures with positive Radon 
measures on A x I - m ,  m]. So defined, o,U~ is ~<log [AI and u.s.c, in the 
vague topology on 9X,,(A). It is also easy to see from the definitions that 

In terms of this entropy, one can formulate a heuristic maximum 
entropy principle, similar to that enunciated by Joyce and Montgomery, 
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according to which, for a given initial datum co o ~ L~(A), the "most likely" 
long-time limit v*e ~ , , (A)  is the solution of the variational problem 

~ ( v * )  = max S,,(v) (4.22) 

(4.23) 

In particular, the long-time behavior should depend only on the initial 
values of the constants of the motion and not upon the specific initial 
datum COo. If 8 "  is the maximizing subset of g, then, by the invariance of 
J~ff,, ~ , ( g * ) = g * ,  and, in particular, ~ , (v*)=  v* if g * =  {v*}. Therefore, 
certainly under the assumption of uniqueness, v* is stationary under the 
(extended) Euler flow ~ ,  and is a quite reasonable candidate for the 
long-time limit. In fact, under the assumptions that ~ff~(v*)>-m and 
O*(x, 2)-=-v*(dx d2)/n(dxd2) is in L~(A x I--m,  m]), one may apply the 
Lagrange principle to show that a mean-field equation is obeyed: 

1 
O*(x, 2) = ~ exp[ - ~(2) - fl).~ *(x)] 

LtX) 
(4.24) 

where ~(2) is a function on [ - m ,  m] and/~ a real number chosen so that 
0*re e g, ~* is the stream function associated to 

and 

o)*(x) = f 20*(x, 2) r~o(d2 ) (4.25) 
[--m,m] 

Z(x) = f e-=(:')-azr ) (4.26) 

is a normalizing integral. 
Robert attempts to justify the assumption that g* is the "most likely" 

behavior in terms of a "concentration theorem." The exact formulation of 
his notion of conditional concentration is rather complex, and we do not 
attempt to explicate it here precisely. However, we observe that it is 
dependent upon a certain sequence of a priori distributions on ffJt,~(A). 
If �9 is a finite measurable partition of A, ~ =  {A;: i=  1,..., N(~)}, such 
that bA;I = IAJ[ for all i, L and 6(~) =supi (diam d i) is the diameter of the 
partition, then for (2,,..., 2m~))e [ - m ,  m]m*), define a trivial Young 
measure 

f~()-I 2 - 6 um (4.27) 
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associated to the step function 

N(~) 

2/XA, 
i=1  

piecewise constant over the partition 3L One may regard f~ as a random 
variable distributed with respect to the a priori distribution ~ = rc~ v(~) over 
[ - m , m ]  ~(~). The meaning of conditional concentration is, essentially, 
that N* i s  the overwhelmingly most likely subset of # with respect to ~ 
as 6(3~),L0. In fact, Robert asserts (without proof) the following large- 
deviations estimates, which seem to us a clearer expression of the same fact: 

1 
lira l o g ~ z ( f ~ e d ) ~ <  sup o,Y=(v) (4.28) 

~ ( ~ ) ~ o - i ~  v e ~  <~ 

and 

1 
lim log ~ ( f ~  e d )  ~> sup 3f.(v) (4.29) 

tot any Borel subset of S02m(A). These are obviously another extended 
version of the familiar Sanov results. 

While we believe that Robert has indeed correctly identified what will 
be, in many situations, the long-time limits, we do not think that the 
theory has been justified in a sufficiently clear way. In particular, the physi- 
cal conditions for its validity are not precisely spelled out. It is usual in 
statistical mechanics that its predictions become valid in a certain limit 
where a physical parameter becomes large or small, such as our limit 
N ~ oo. It is not clear from Robert's presentation what this physical limit 
should be. Furthermore, we do not think that Robert's Young measure 
method should be regarded as a replacement for the statistical mechanics 
analysis in terms of stationary measures. We have already seen that the 
probability measures vx, x e A, should be interpreted as the spatial distribu- 
tion of vorticity. It is well defined for a given empirical flow field (to a 
certain degree of resolution) and has nothing to do whatsoever with the 
statistical fluctuations which shall occur over time or over an ensemble of 
similarly prepared samples. Such statistical fluctuations will certainly occur 
for a finite value of the physical parameter, and, indeed, it is observed in 
numerical simulations that final equilibria have to a good approximation a 
permanent form but are subject to continuous slight change in shape and 
size (e.g., see ref. 37). Although the overwhelmingly most probable behavior 
is of the greatest interest, the fluctuations also occur and should be 
described by an appropriate stationary measure. 
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The large-deviation estimates of Robert are actually suggestive of an 
alternative of this sort. Corresponding to a given partition 3E of the flow 
domain A, one might define a microcanonical distribution 

~,r162 (4.30) 

By employing the appropriate large-deviations theory, one could justify 
(following the argument in the Appendix) the thermodynamic limit of the 
entropy, the maximum entropy principle, and the large-fluctuation theory, 
such as we earlier discussed for the point-vortex model. An upper-bound 
large-deviations estimate f o r /~ , r  is an a priori reasonable statement that 
g* is "most" of 8 (with respect to #~,r as 6(~)--,0. The chief difficulty 
with this proposal is that p~,r is not a stationary measure for the Euler 
flow ~t when considered as a distribution over 9"Rm(A). It certainly is not 
obviously the correct candidate to describe the actual statistical fluctua- 
tions (although one may believe that it probably suffices in practice.) 

However, the approach of Miller is essentially equivalent to the above 
prescription in a canonical version. (25'28) His starting point is a formal 
expression for the Gibbs distribution as a functional measure: 

1 
l"I do(x) 6[no, - no] e -a'~(~ (4.31) 

Z(#, no) x~A 

with the partition function 

Z(~, no)=f I-[ do)(x) 6In ,o -no]  e -am~ 
x E A  

(4.32) 

which is formally invariant under the Euler flow ~, [here, H(og)---e(co)]. 
To render the above formal expression meaningful, Miller introduces a 
square-lattice partition of the domain, and restricts the integral to the 
piecewise-constant vorticity fields. Furthermore, looking at/~, which scales 
with a as/~a = [~/a2, he applies heuristically the method of steepest descent 
to argue that 

- lira a 2 log Z(fl, no) 
a ~ O  

= inf {~(~)-J:~o(V): V~gJl,,(A), f dx vx=no} (4.33) 

in the Young measure notation of Robert. This is clearly a canonical form 
of the limit result previously suggested for the microcanonical measure 
#~,~, with 6 ( ~ ) = a  and N(3E)~bAI/a 2. Therefore, it has the same 
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limitation that the lattice-measure for finite a is not stationary, whereas the 
continuum measure is only a formal object. 

In his thesis 128) Miller has made some further suggestions which, we 
believe, illuminate the situation, (An extended account of his work has just 
appeared in ref. 38.) We would like here to paraphase his discussion and 
expand upon it somewhat. 

First, Miller is much clearer that a physical limit is required for the 
validity of the theory, whereas this is very much implicit in Robert's 
approach. Indeed, Miller implies that the constant a should be interpreted 
as a (spatial) dissipation scale, where viscous dissipation becomes signifi- 
cant, analogous to the Kolmogorov scale r/of homogeneous turbulence. It 
is important to understand that the theory depends upon a large separation 
of scales, L >> a, between the macroscopic dimension L of the flow domain 
and the dissipation scale a. This corresponds also to a large number of 
degrees of freedom in the macroscopic (or superinertial) range of the 
hydrodynamic equations. It is also important to understand that small 
viscosity plays a double role in justifying the theory: first, it implies that 
there will be a sufficiently long-tifne period (somewhat less than the viscous 
diffusion time) and, second,/a sufficiently large range of spatial scales over 
which ideal Euler hydrodynamics will be valid. 

Furthermore, Miller has made a suggestion which we believe has 
promise to provide a better dynamical understanding of the extended 
Robert-Miller theory. There have been recent investigations of finite-mode 
analogs of two-dimensional Euler equations based on SU(N) Lie algebras 
(e.g., see ref. 39). These algebraic models have O(N 2) modes and O(N) 
conserved equations. Formally, both the dynamics and the conserved 
integrals converge to those of the two-dimensional Euler equations as 
N ~  oe. A sufficiently good convergence result, analogous to that of 
Hald (4~ for simple Fourier truncations, might provide an appropriate 
dynamical basis for the theory. One can conceive of a final justification 
along the following lines: First, a convergence proof that, for small 
viscosity, O(N'-) Fourier modes of the hydrodynamic equations (in the 
superinertial range) shall have their evolution well-approximated over a 
long time interval by the SU(N) model equation with N large. This reduces 
the problem to a dynamical analysis of the SU(N) model. In particular, 
there is the (very difficult) problem to establish that the SU(N) dynamics 
achieves an "effective" microcanonical distribution within the time interval 
of its validity. Granting that--the usual ergodic assumption of statistical 
mechanics--one must analyze the large-N limit of the O(N2)-mode 
microcanonical distributions. This presumably reproduces the results of 
Miller and Robert. Such a convergence result could certainly illuminate a 
point which both Miller and Robert have emphasized: the importance of 
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considering all the conserved first integrals of the Euler flow. At present, 
there is only limited evidence of the importance of the additional conserved 
quantities, (23) but it is certainly a key issue of the Robert-Miller theory. 
Finally, the O(N2)-mode microcanonical distribution would be a theoreti- 
cally well-founded measure to describe the statistical fluctuations which 
occur for finite N (i.e., finite viscosity) over the time interval of quasista- 
tionarity of the vortex structure. 

No te .  After the completion of this work we received the thesis of 
Caglioti. (32! In that thesis more extensive studies have been made than here 
of the thermodynamic potentials and equilibrium vorticity distributions. 
Also, another proof of the mean-field limit for entropy and microcanonical 
correlation functions is given, which, however, is restricted to energies 
where the entropy is concave and thus equivalence of ensembles holds. 

APPENDIX. MATHEMATICAL FRAMEWORK AND THE 
PROOF OF THE LARGE-DEVIATION ESTIMATES 

Our setup is as follows: A is a compact subset of N2 (or, generally, 
Nd), N its Borel a-field, and (f2, ~ )  = (A, &)~ the product space. For each 
k s Z +, define the shift Ok: f2 ~ 12 by 

Ok(x,: is  N) = (x;+k: ie 1~) (A1) 

Clearly, 0 = { O k -" k s Z § } is a semigroup of endomorphisms of the measure 
space (I2, o~)..If a*: N ~ N  is a bijection fixing all but finitely many 
elements (i.e., a permutation of finitely many integers), then define 
a : ~ O  as 

a(xi: is  IN)= (x..m: i~ N) (A2) 

The set of such a: f2 --. g2 form a group So~ of automorphisms of (Q, o~). 
For each N s  N, denote by SN its subgroup of those a: f2 ~ f2 such that 
a*(i)=i for i>N, so that S~=Uw~NSjv. Let # denote the set of all 
probability measures on (f2, o~), #0 the subset of ~ invariant under the 
semigroup 0, ~, the subset of ~ invariant under the group S~, and #~ 
the subset of ~ consisting of elements of the form Qn for some 
Q s ~ - ~ ( A ,  ~). We commonly refer to ~0 as the shift-invariant distribu- 
tions, to ~'~ as the symmetric (or exchangeable) distributions, and to ~ as 
the product distributions on (A, &)~. It is a consequence of Theorem 3.2 of 
ref. 41 that ~,  _~ ~0, and, obviously, ~ ~ #~. 
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For each nonempty S_~ N, we let Hs: t'2-~ A s be the projection map 
defined by 

IIs(X,: i s  N) = (xi: i t  S) (A3) 

and o~ = H s l ~ s  the corresponding sub-a-algebra of o ~.  For each /~ e N, 
we write #s =/~ o H s  I for the marginal distribution of # on (A, ~)s .  In the 
particular case S = { 1,..., N}, we write I I  s = IIN, ~S = ~N, PS = #~V- We say 
that f :  f2 ~ N is finite-body or local if it is o~s-measurable for some finite 
S__qN. 

With respect to the product topology, s = A m is a compact metric 
space. If C(12) denotes the continuous functions on f2, then the weak 
topology ~ w on ~ is the coarsest topology relative to which the evaluation 
maps / z ~ / z ( f )  are continuous for each fsC(t-2).  It is equivalent to 
requiring continuity of the evaluation maps for f s  ~ c _  ~ m C(f2), since 
every continuous function on O is the uniform limit of continuous, local 
functions [see ref. 42, Remark 2.21(2)]. Therefore, we may take as an open 
base for r w all sets of the form 

U ( # ) -  {vsr max Iv(f,-)-~(f,)l <3} (A4) 
l ~ i ~ n  

for/~ ~ ~,f~.~ ~L~ c, i =  1,..., n, and f i>0.  It is well known that ~ with respect 
to the zw-topology is itself compact and metrizable (e.g., ref. 43). Finally, 
it is easy to check that ~ ,  ~ , ,  and ~= are closed subsets of ~ and may be 
equipped with the subspace topologies. Each of the spaces ~ ,  ~ ,  ~, ,  and 
~ are natural measure spaces in association with their Borel o'-algebras 
~ ( ~ ) ,  ~(r etc. 

We next recall the definition of the specific entropy or mean entropy of 
a measure/~ e ~o as 

1 
h(#) = lim - I(#s; 2 s) (A5) 

sTN ] '~ 

where, for two measures ~, fl on the same measure space, I(a; fl) denotes 
the relative entropy of ~ with respect to fl (see ref. 42, Section 15.2). In fact, 
the last reference defines h and develops its properties for the case where 
is replaced by 7a, and the shifts 0k form a group of automorphisms rather 
than merely a semigroup of endomorphisms. However, it is easy to check 
that all the development there carries over to the case we consider. Hence, 
we may take as well known the following properties of h on ~ :  

(i) For a l l # ~ ,  

h(y)=inu f lSN( l~N)s  [-~ oo, log 2(A)] 
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(ii) h is u.s.c, and its level sets {h>~c}, c~<log2(A), are compact 
and sequentially compact. 

(iii) h is an affine function on ~0. 

In the statement of (i) we have used the more physical notation 
SN = --I( .; 2N). Since ~ is a closed, convex subset of ~0, the same proper- 
ties hold for h when restricted to ~ ,  and, likewise, since ~, is closed in ~0, 
(i) and (ii) hold when h is restricted there. 

The structure of the space ~ of symmetric or exchangeable, distribu- 
tions is important for our discussion. It is a well-known theorem of 
de Finetti 13~ (see also Dynkin 144)) that, if ~ I = ~ ( A , & )  and 8 ( ~  ~) is 
the evaluation a-algebra of subsets of #~ generated by the sets 
{O~#~:o(B)<<.c} with B e ~  and 0~<c~<l, then for every/~e#~, there is 
a v~e (~i, ~(~1)) such that 

# = f v~(de) e r~ (A6) 

where identity is in the sense # ( f ) =  S v~(de)er~(f) f o r f e  ~LP. Furthermore, 
the correspondence /l~--~vu is bijective and anne. If ~(~1)  is the Borel 
a-algebra for the weak topology on ~,1, it is easy to check that 
g(#al)=N(NI)  using the separability of ~1 for the weak topology and a 
simple monotone class argument. Hence, vu is a Borel probability measure 
on N1. We may note that, according to the theorem of Hewitt and 
Savage, (4~) the extremal elements of #'~ are just the product measures, 

e x ~ =  {O~: e e ~  1 } (A7) 

Therefore, the above representation is a usual type of extremal integral 
decomposition. It is a simple computation that 

h(e~)=s(e)  (A8) 

where s(e) = - I (e ;  2). As a consequence of Theorem 15.20 in ref. 42, it then 
follows that 

h(p) = f v.(do) s(e) (A9) 

for p given by (A6) above, 
We shall be concerned with symmetric averages or symmetrizations of 

local functions f e  .W, i.e., if f is ~n-measurable, the function 

1 
pNf=_...~.. ~ fog  (A10) 

treSN 
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It is well known that for/z ~ exg~ = ~., f e ~ ,  

lira P N f = f f d #  #-a.s. (All)  
N ~  

[e.g., see ref. 42, Example7.16, Remark 7.13, and Theorem7.12(a)]. 
Obviously, this is just a generalized form of Kolmogorov's strong law of 
large numbers. We are here concerned with large deviations from this 
ergodic behavior. 

The collective asymptotic behavior of all such symmetric averages can 
be described conveniently by a single quantity, a periodic empirical field. 
For our purposes, given N~ N and a configuration cocA N, this is defined 
by 

a~SN 

where coP~el2 for ( .o~A N is the periodic continuation of co defined as 
(coP~)i=Xi(modm. It is then immediately obvious that Q~v:co~Q~v is a 
measurable function from A N to ~.  In fact, QN is measurable into ~0: 

Propos i t ion  A.1. ON:( . .Ot- -" ) '~  V is a measurable function from 
(A N, ~N) into (~o, ~(~o)). 

Proof. 
tions of {1,.., N}, then we may also write O~v as 

If CN is the subgroup of SN defined by the N cyclic permuta- 

1 1 

N O'E~N 

1 ~  1 1 

a~SN 

The latter expression clearly exhibits that 07veto. Moreover, by the 
separability of ~ for the weak topology and a simple monotone class argu- 
ment, 9~(9~o)= 8(~o), where ~(~o) is the evaluation a-algebra generated by 
the sets {/~ ~ ~o:/~(B) <~ c } with B e 9~(~o) and c ~ [0, 1 1. From this remark, 
the (~o, 9~(o~o))-measurability is obvious. II 

For f ~  s the ~N-measurable subspace of ~ ,  we define naturally a 
function QNf:AN--*R as QNf:og~--*Q~v(f)=SfdQ~v. Obviously, QNf 
coincides with PNfpreviously defined. 

However, Q~v has the disadvantage that, although Q~v ~ ~o, nevertheless 
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Q~v r ~ .  Therefore, it is natural to introduce also a symmetric empiricalfield 
ON, defined as 

ON--C~ __ 6xi ~ ( A 1 4 )  

i = I  

Observe, as a matter of fact, that 0~sN, ,  which is important for the 
later development. This field may be used as a replacement for 0~v as a 
consequence of the following proposition: 

Proposition A.2. For eachfs&a,  

lim IleNf--ONfl)~=O (A15) 
N ~ cx:~ 

Proof. I f f e  &a for m ~< N, 

1 
O~(f) = N-----s ~ f(x~,(1),..., x,p(,,)) (A16) 

(p~ M(m,N) 

where M(m, N) is the set of all mappings from {1,..., m} to {1 ..... N}, and 

( N -  m)! ~ f(x~o(1) ..... xo(,,)) (A17) 
e~( f )  = m! ~o~M(m,N) 

where M(m, N) is the set of all injective mappings in M(m, N). Since 
therefore 

10~v(f)-Q~v(f)l ~<2 I[flJ~ (1 N!/(N-m)!)N,, / (A18) 

for all co ~ A N, the result follows. �9 

An important consequence of Proposition A.2 is that, for every co e g2, 
0~v and Q~v have the same accumulation points in ~0 with the z w-topology. 
In particular, all of the accumulation points of 0~r belong to ~ .  

Now we formulate the statement of the large-deviations theorem 
which we shall subsequently prove. Let ( /~N:NeN) be a sequence of 
probability measures /~u on (A, N)N. The symmetric empirical measures 
0NC~= as random variables under/ lu  are said to satisfy a (level-3) large- 
deviations principle, with rate function I : ~ = ~  [0, +o  e l, if, for any 
measurable C _= r 

1 
lim F l o g  IAN(QN e C) <~ - in f I (C)  

N ~ o o  
(AI9) 
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and 

1_~_ l lOggN(~NeC)>~ -- inf l(~)  (A20) 

where C (resp. r  is the closure (resp. the interior) of C in the zw-topology 
relativized to ~ .  

It is important to observe that the spaces ~ and ~ may be, essen- 
tially, identified. Indeed, if ~.  is given the z w-subspace topology and ~1 its 
own weak topology, it is easy to check that the bijection e e ~ e ~ e ~ ,  
is actually a homeomorphism. Therefore, it is also, an isomorphism of the 
measurable spaces (~1, ~ ( ~ i ) )  and ( ~ ,  ~ (~ ) ) .  In particular, we can see 
that there is no real distinction between the above level-3 principle and the 
corresponding level-2 principle formulated in terms of the empirical 
one-particle distribution 

1 
(~ xi e ~ 1 (A21) 

Ni=I 

for each N~ ~. In fact, in the level-2 formulation, results analogous to 
those we establish below, so-called Sanov properties, were proved before 
(e.g., see refs. 33, 34, and 36). However, working at level 3, we can prove 
somewhat stronger results: in particular, convexity restrictions on the 
conditioning set may be removed in the statement of the maximum entropy 
principle. (Observe that {e ~ ~1: e(e)~ [e_, e+ ] } is not convex, since e(O) 
is not affine.) 

It is convenient here for us to use an alternative, completely equivalent 
formulation of the large-deviations property (e.g., see ref. 33). We make the 
following definition: 

D e f i n i t i o n  A.1. A symmetric asymptotic empirical 
(SAEF) {(F N, F)} is a family (FN:N~ ~) of symmetric 
functions F~v: A N~  ( - ~ ,  + ~ ] ,  together with a 
F: ~= --, ( - o% + oo ] which is bounded below and such that 

N~lim 1 - -  F ( ~ N )  oo F E N  =0 (A22) 

The definition of the SAEF is not the most general for which the results 
below are valid, and in fact, Georgii has shown (Remark 1.4 of ref. 33) that 
the Theorems A.1 and A.2 below still hold under the weaker conditions 
that 

lim inf [1__ F~ (co) - inf F ( U ( ~ ) ) / / >  0 (A23) 
A 

functional 
measurable 

functional 
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and 

1-~ sup IIFN(co)-sup F(U(O~))l<<O (A24) 
N ~  ~ o g ~ A  N 

for every basis element 

U(v)= { # ~ :  sup I#(f3-v(f, .)[  <6}  
l <~i~n 

of v for the zw-topology, with f ~ c ,  1 = 1,..., n, 6 > 0. We may refer to 
{(FN, F)) which satisfies the above weaker conditions as an SAEF in the 
wide sense. We remark that these weaker conditions are just a version in 
the context of lattice systems of those proved by Varadhan in a general 
large-deviations context to be sufficient for the Laplace theorem. ~45) 

For any F: ~ ~ ( - 0 %  + on] we define F "so (resp. Flsr to be the 
upper semicontinuous regularization (resp. lower semicontinuous regular- 
ization) of F on #..  Then, an equivalent formulation of the large-deviations 
property is just that, for every SAEF { (Fu, F)}, 

and 

F l o g  # u ( e -  u) ~ - i n f [ I +  Fls~ (A25) 

lim I log #u(e -FN) >1 - i n f [ I +  F use ] (A26) 
;-2-o~ N 

In particular, taking, for any measurable Cc_~=, F ( p ) = 0  if #~C,  
F(/~)= + ~  if # r  and FN(W)=NF(~), one obtains the previous 
statement. 

We now state the main theorem. Denote by ,~ the normalized 
Lebesgue measure on (A, &), i.e., ~,(. ) = 2(-)/IA[ so that ,~ ~ ~(A, &). Then, 
~v is a sequence of probability measures on (A, &)~v for which the 
following holds: 

T h e o r e m  AA. (~U:N~ N) satisfies a level-3 large-deviations 
principle for ~u with rate function I: ~=--* [0, + o r ]  given by I (# )=  
log IAI -  h(#). 

Proof of the upper bound. For the proof, let us only indicate the 
differences from the proof of the corresponding Theorem 1.2 in ref. 33. We 
may work in the compact, convex space ~, and take { (FN, F)} an SAEF 
in the associated sense, i.e., F: ~ ~ [0, + m ]. Proving the upper bound in 
such a framework, one can return to the statement of our theorem by 
choosing F =  + m on ~d~=. Just as in the proof in ref. 33, one introduces 
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the Gibbs distribution /t F on (A, M) N, which, indeed, may be defined for 
any SAEF with 2N({FN< + ~ } ) > 0  by 

ptF~. [)N(e--FN)" ] - I  ~--FNI~N (A27) 

Furthermore, one may define a measure fiF ~ ~ by 

IN--I 
f iF=~r ,~o (#Fln~ (A28) 

which corresponds to that in (4.3) of ref. 33. Here, (p~)~ stands for the 
probability measure on ((2,~-) relative to which the projections 
(Hw. ~)~v,m)i~ are independent with identical distribution/z v. Then, the 
Lemma 4.1 of ref. 33 still holds. Likewise, Lemma 4.2 still holds, with the 
following changes: (1) 50c must replace 50 in the definition of_F and (2) 
0N must replace QA" 

~F We must finally verify that the measures /~N and /AF~N have the same 
accumulation points, as N ~  az, as the analog of Lemma 4.3 in ref. 33. We 
state this as follows: 

Lemma A.1. For all f ~ 5 ~ 

lim [ f i~ ( f ) - - t tF~u( f ) ]  = 0 
N~oo 

(A29) 

ProoL As a consequence of Proposition A.2, we may dearly replace 
0N in the above statement by 0N- NOW it is very easy to check that, for any 
SAEF {(FN, F)}, 

lz~O N F "i~ - x = P N  ~ ( z N )  (A30) 

where l N'pe''. A N ~ f2 is the injection i~ver(co) = a~ r~'. Indeed, for f ~  50, 

1 

= f #~(d~) f(c.o per) (A31) 

where the symmetry  o f  F N has been used. But then it follows easily, as in 
Lemma 4.3 of ref. 33, that 

I#x~(f)-/X~ON (f)[ ~< 

< ~ ~ 2 l l f l l ~ 1 6 3  {1,...,N}}I (A32) 

where f is ~-measurable. This gives the result. [] 
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The rest of the proof of the upper bound in ref. 33 goes through in our 
situation, with only some obvious alterations (e.g., ~ must be everywhere 
replaced by 5~ 

Proof of the lower bound. For this part of the proof, we must 
necessarily remain in the space ~=. However, since every element of ~ is 
ergodic relative to 0, we may just follow exactly the proof in refs. 46 and 
47 for the ergodic elements, to obtain the lower bound 

1 AN F 
lim ~ log 2 (e-  N) 1> - [ I (v )  + F"S~(v)] (A33) 

N 2V 

pointwise for every v ~ N~. Of course, this yields the result. �9 

The Gibbs measures introduced in the course of the above proof have, 
obviously, more than just a technical interest. In fact, #un for an SAEF 
{(HN, H)} represents a very general version of a canonical Gibbs measure 
for a mean-field Hamiltonian HN. As a consequence of the above theorem 
and a basic extension principle (e.g., see Theorem II.7.2 in ref. 48), the 
sequences ( /~ )  have also a large-deviations property. We state this result 
as a corollary: 

Corollary A,1. Let {(HN, H)} and {(Fu, F)} be two SAEFs. 
Suppose also that H is continuous and inf [ I+  H I  < + ~ .  Then, pu n is 
essentially well defined and we have 

- -  1 H F Jirno~ ~ log ]A N (e-  N) ~< _inf[IH + F,sr (A34) 

and 

H --FN li__rn log/~g (e ) t> --inf[I H + F "so ] (A35) 
N ~ o o  

where the H-modified entropy function I H = I+ H "  inf[I+ H].  

Proof. The proof follows that of Corollary 1.5 in ref. 33. 

We now wish to state a limit theorem for the distributions of the type 
(#un) which is, properly, a "minimum free energy principle." By abuse of 
notation, we write #un for an arbitrary probability measure on (I2, f f )  
whose marginal distribution (A, ~ ) u  coincides with the Gibbs distribution 
(A28). Then, we have the following result. 

T h e o r e m  A.2. Let {(HN, H)} be an SAEF satisfying 

inf[I+H~scJ=inf[l+H"Sr + ~  (A36) 
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Then, in the limit N ~ 0% the sequence (#~) admits at least one accumula- 
tion point # e ~ ,  and each such/~ has a representation !~ = S v w(dv) for a 
Borel probability measure on the compact set 

M H = {v 6 ~ :  I ( v )  Jr Hlsc(v) = i n f [ I +  H~sr } (A37)  

ProoL The proof of this theorem is essentially the same as that of 
Theorem 1.6 in ref. 33. In the same way as there, it is shown that 

~b ~ aCCNT ~ /~N ~ ---q {I+ _H= rain } (A38) 

and {I+_H=min} is equal to the'set of all mixtures of measures in 
{I+Hlsr Here, as before, H:~.-- ,  [0, +oo]  is extended to ~ by 
the definition H = + oo on ~= /~  and _H is the lower convex envelope of H 
relative to ~,. The only thing that remains to be shown is that 

aCCNT o~ /IN H = accNr ~ / l ~  (A39) 

However, this was essentially already seen in the proof of Lemma A.1, for 
it was found there that 

/ . / N  H o ~ ' pe r  \ -- 1 ~l N ) =~HNe N ( A 4 0 )  

so that, for any f e  ~u,  with our abuse of notation, 

llHN(f) = k t ~ O N ( f )  (A41) 

The latter equation obviously holds for any f ~  ~ with N sufficiently large. 
Therefore, the result follows from the statement of LemmaA.1 and 
Proposition A.2. �9 

Comment .  In view of our earlier remark about the identity of ~. and 
~a, we may just as well represent the limit points in the above theorem as 
It = ~ v(do)0 ~ for a Borel probability measure v on the compact set 

MH = {0 e ~ :  h ( o ) -  s(o) = inf[h~sr s] } (A42) 

with h(Q) -= H(O~). 
As a corollary, we may deduce a similar result for generalized distribu- 

tions of microcanonical type. Indeed, for any measurable ~ with 
N 2N(~ue (~)>0, one can define a distribution/l c on (A, ~ )u  by 

~ ( . )  _= IN(. ION e ~) (A43) 

Then, the following holds. 

822/70]3-4-24 
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Corollary A.2. (Maximum entropy principle.) if C is an 
h-continuity set and ~-6C its closed convex hull, then 

~72~ ~ aCCNT~ #~(')----- {~ ~-6C: h(~t) = sup h((~)} (A44) 

Furthermore, each such accumulation point has an integral representation 
of the form/~ = S v(de) 0 ~ for v a Bore1 probability measure on the compact 
set 

M c= {0 ~ :  s(o) = sups(C)} (A45) 

with C = C ~. 
The corollary follows directly from Theorem A.2 by taking H ( # ) =  0 if 

# ~ C ,  H ( # ) =  +oo if # ~  C, and HN(O))=NH(O~v ). 
The proof of Theorem 4.1 in Section 4 is an explicit application of the 

previous general results. We need the following lemma. 

I . emma A.2. Define {(FN, F)} by 

{0+ if .gIu/Ne[e_,e+] 
FN(W) = ~ if l~tN/Nr (A46) 

and, likewise, 

f O  if g(/l)e [e_ ,  e+ ] 
F(p)=_ ~ if g(p)r (A47) 

Then, ((FN, F)} is an SAEF in the wide sense. 

Remark. It is easy to check that (/~(N), g) is an SAEF. However, 
{(FN, F)} as defined above is not, because an SAEF must have the 
property that {FN= + ~ }  = {F(ON)= + ~  } for N sufficiently large. This 
clearly does not hold. 

Proof. Let us check the first condition (A23). Now, one can see that, 
given U(-) = U(. ;f~,..., Fn, 6) defined as in (A4) with fi,  i = 1 ..... n and 6 
fixed, there is an r / > 0  such that veg-a([e --rl, e++rl]) implies that 
U(v) n g - l ( [ e ,  e+ ] ) r  ~Z~. Since obviously we can find a e > 0 such that 
the open metric ball BQ(v)~U(v) for all v e ~  [by uniform continuity 
of the evaluation maps #~-*#(f) ,  f e ~ c ] ,  we can replace U(v) in this 
statement by Be(v ) . Define 

K, =- g-~([e_ - q, e+ + 7])  (A48) 

and 
K-g-~([e_,  e + ] )  (A49) 
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so that 

0 K. = K (A50) 
r/>0 

Because ~ is a compact, metric space for the weak topology and g is 
continuous, K,, K are all compact. If d(#, v) is the (Prohorov) metric 
on ~ ,  define an u.s.c, function dK: ~--* ~+ by 

Then, define 

We show that 

dK(#) = d(#, K ) -  inf d(/~, v) (A51) 
v ~ K  

6(r/)-= sup dK(p) < +oo (A52) 

lim3(q) =0 (A53) 
~ 0  

Indeed, suppose the contrary, that there is a sequence t/n ~ 0 such that 

6(~,)~>6>0 

for all n. Define for every q, 

K~(a)=K.n {dx~> 6} 

(A54) 

(A55) 

a compact subset of K, and decreasing for i7 ~ 0. By the assumption, 

K~,(6) # ~ (A56) 

since the u.s.c, function d,r achieves its supremum on each K~. However, 
since the K~(6) monotonically decrease as r/+0 

K~(6) # ;g (A57) 

for all ~/. Then, 

~t>0 

However, clearly Kc~ {d K/> 3 } = ~ ,  a contradiction. Thus, 6(r/) ~ 0 as r/~ 0, 
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as claimed. To complete the argument, we now simply choose t/sufficiently 
small that 6(r/)<0. Then, dearly, for v ~ K,, 

Bo(v)c~ K C fZJ (A59) 

since d(v, tz) is continuous in # for v fixed and therefore achieves its 
infimum on K, which is less than 0. 

The point of the above observation is the following: by choosing N 
sufficiently large that 

H(N)-- g(OY) ~ < 11 (A60) 

it follows that, if, for ~o ~ A N, (l/N)/7(N)(a~) ~ [e_, e+ ], then also ~'(QN) e 
[e_ --r/, e+ +r/J, so that by the above, F ( p ) = 0  for some #~ U(~) ,  and 
inf F(U(O~v))=0. That is, FN(a~)=0 implies inf F (U(~v) )=0  for all 
co ~ A N, for N sufficiently large. Obviously, this implies (A23). 

The argument for the second estimate (A24) is virtually the same and 
may be omitted here. �9 

Comments .  (i) The above lemma actually holds if {(/)(N), g)} is 
replaced by any SAEF {(HN, H)} with H continuous. (ii) However, the 
result is not necessarily true if we use only that H is continuous on a 
complete, separable metric space: weak compactness of #~ was essential for 
our proof. 

To derive Theorem 4.1, we now apply Corollary A.1 with the above 
wide sense SAEF {(FN, F)} playing the role of {(HN, H)} there. However, 
since F is not continuous, one must check to see what is the corresponding 
result and apply the condition s(A)= s(Z). We remark, finally, that using 
the above lemma in conjunction with Theorems A.1 and A.2, we obtain an 
independent proof of Theorem 2.1 in Section 2. 
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